Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 14;13(19):5659-5666.
doi: 10.1039/d2sc01241c. eCollection 2022 May 18.

A general electron donor-acceptor complex for photoactivation of arenes via thianthrenation

Affiliations

A general electron donor-acceptor complex for photoactivation of arenes via thianthrenation

Kai Sun et al. Chem Sci. .

Abstract

General photoactivation of electron donor-acceptor (EDA) complexes between arylsulfonium salts and 1,4-diazabicyclo[2.2.2]octane with visible light or natural sunlight was discovered. This practical and efficient mode enables the production of aryl radicals under mild conditions, providing an unrealized opportunity for two-step para-selective C-H functionalization of complex arenes. The novel mode for generating aryl radicals via an EDA complex was well supported by UV-vis absorbance measurements, nuclear magnetic resonance titration experiments, and density functional theory (DFT) calculations. The method was applied to the regio- and stereo-selective arylation of various N-heterocycles under mild conditions, yielding an assembly of challengingly linked heteroaryl-(hetero)aryl products. Remarkably, the meaningful couplings of bioactive molecules with structurally complex drugs or agricultural pharmaceuticals were achieved to display favorable in vitro antitumor activities, which will be of great value in academia or industry.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Photocatalytic arylation of aryl sulfonium salts.
Scheme 2
Scheme 2. Substrate scope of the alkylation of azauracils and nucleosides.
Scheme 3
Scheme 3. Substrate scope for the arylation of quinoxalin-2(1H)-ones.
Scheme 4
Scheme 4. Screening of other (hetero)aromatic cycles. (a) Reaction conditions: (hetero)aromatic cycle (0.1 mmol) was reacted with thianthrenium salt (0.2 mmol) in the presence of DABCO (3 equiv.) under 10 W blue LED irradiation. (b) 3-Methylene-1-phenylpyrrolidine-2,5-dione (0.1 mmol) is used as a substrate to react with thianthrenium salt (0.2 mmol) in the presence of DABCO (3 equiv.) under 10 W blue LED irradiation. (c) Thianthrenium salt (0.1 mmol) was reacted with (hetero)aromatic cycle (10 equiv.) in the presence of DABCO (3 equiv.) under 10 W blue LED irradiation.
Scheme 5
Scheme 5. Synthetic applications.
Scheme 6
Scheme 6. Control experiments.
Fig. 1
Fig. 1. (a) UV-Vis absorption spectra of reactant mixtures recorded in CH3CN in 1 mm path-length quartz cuvettes, and visual appearance of the separate reaction components and the colored EDA complex between compound 2 and DABCO. (b) Calculated bond distances of arylsulfonium salt 2 and DABCO. (c) Calculated HOMO and LUMO of the EDA complex.
Scheme 7
Scheme 7. Proposed mechanism.

References

    1. Liu W. Yang X. Gao Y. Li C.-J. J. Am. Chem. Soc. 2017;139:8621. doi: 10.1021/jacs.7b03538. - DOI - PubMed
    2. Mo F. Qiu D. Zhang L. Wang J. Chem. Rev. 2021;121:5741. doi: 10.1021/acs.chemrev.0c01030. - DOI - PubMed
    3. Ghosh I. Marzo L. Das A. Shaikh R. König B. Acc. Chem. Res. 2016;49:1566. doi: 10.1021/acs.accounts.6b00229. - DOI - PubMed
    4. Zhou C. Lei T. Wei X.-Z. Ye C. Liu Z. Chen B. Tung C.-H. Wu L.-Z. J. Am. Chem. Soc. 2020;142:16805. doi: 10.1021/jacs.0c07600. - DOI - PubMed
    5. Li H. Tang X. Pang J. H. Wu X. Yeow E. K. L. Wu J. Chiba S. J. Am. Chem. Soc. 2021;143:481. doi: 10.1021/jacs.0c11968. - DOI - PubMed
    1. Kvasovs N. Gevorgyan V. Chem. Soc. Rev. 2021;50:2244. doi: 10.1039/D0CS00589D. - DOI - PMC - PubMed
    2. Mo F. Qiu D. Zhang Y. Wang J. Acc. Chem. Res. 2018;51:496. doi: 10.1021/acs.accounts.7b00566. - DOI - PubMed
    1. Seiple I. B. Su S. Rodriguez R. A. Gianatassio R. Fujiwara Y. Sobel A. L. Baran P. S. J. Am. Chem. Soc. 2010;132:13194. doi: 10.1021/ja1066459. - DOI - PMC - PubMed
    2. Fujiwara Y. Domingo V. Seiple I. B. Gianatassio R. Del Bel M. Baran P. S. J. Am. Chem. Soc. 2011;133:3292. doi: 10.1021/ja111152z. - DOI - PMC - PubMed
    3. Hosseinian A. Mohammadi R. Ahmadi S. Monfared A. Rahmani Z. RSC Adv. 2018;8:33828. doi: 10.1039/C8RA06423G. - DOI - PMC - PubMed
    1. Lansbergen B. Granatino P. Ritter T. J. Am. Chem. Soc. 2021;143:7909. doi: 10.1021/jacs.1c03459. - DOI - PMC - PubMed
    1. Wang P.-Z. Wu X. Cheng Y. Jiang M. Xiao W.-J. Chen J.-R. Angew. Chem., Int. Ed. 2021;60:22956. doi: 10.1002/anie.202110084. - DOI - PubMed
    2. Zhou W.-J. Wang Z.-H. Liao L.-L. Jiang Y.-X. Cao K.-G. Ju T. Li Y. Cao G.-M. Yu D.-G. Nat. Commun. 2020;11:3263. doi: 10.1038/s41467-020-17085-9. - DOI - PMC - PubMed
    3. Qi J. Zhang F.-L. Jin J.-K. Zhao Q. Li B. Liu L.-X. Wang Y.-F. Angew. Chem., Int. Ed. 2020;59:12876. doi: 10.1002/anie.201915619. - DOI - PubMed
    4. Li Z. Wang M. Shi Z. Angew. Chem., Int. Ed. 2021;60:186. doi: 10.1002/anie.202010839. - DOI - PubMed
    5. Cai B.-G. Luo S.-S. Li L. Li L. Xuan J. Xiao W.-J. CCS Chem. 2020;3:2764. doi: 10.31635/ccschem.020.202000588. - DOI
    6. Xu A.-Q. Zhang F.-L. Ye T. Yu Z.-X. Wang Y.-F. CCS Chem. 2019;1:504. doi: 10.31635/ccschem.019.20190025. - DOI
    7. Huang C.-Y. Li J. Liu W. Li C.-J. Chem. Sci. 2019;10:5018. doi: 10.1039/C8SC05631E. - DOI - PMC - PubMed
    8. Kuang Y. Cao H. Tang H. Chew J. Chen W. Shi X. Wu J. Chem. Sci. 2020;11:8912. doi: 10.1039/D0SC02661A. - DOI - PMC - PubMed