Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 28;94(25):8833-8837.
doi: 10.1021/acs.analchem.2c01534. Epub 2022 Jun 13.

Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer

Affiliations

Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer

Ryan A Ruiz et al. Anal Chem. .

Abstract

Paper-based microfluidic devices, also known as microPADs, are an emerging analytical platform with the potential to improve point-of-care diagnostics. MicroPADs are fabricated by patterning hydrophobic inks onto sheets of paper to create hydrophilic channels and test zones. One of the main advantages of microPADs is that they are inexpensive and simple to fabricate, making them accessible even to researchers with limited budgets or no prior fabrication expertise. Wax printing, where a solid ink printer is used to pattern wax on paper, has been the most convenient and popular method for fabricating paper-based microfluidic devices. Unfortunately, solid ink printers were discontinued in 2016 and are no longer available commercially. Here we introduce a method for fabricating microPADs using a portable thermal transfer printer that retains the convenience of wax printing. Devices fabricated by thermal transfer printing were comparable to devices fabricated via wax printing and laser printing. The low cost, convenience, and portability of the thermal transfer printer make this approach an exciting prospect for replacing wax printing and facilitating the continued development of paper-based microfluidics.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources