Electrochemical Reactors for Continuous Decentralized H2 O2 Production
- PMID: 35698896
- DOI: 10.1002/anie.202205972
Electrochemical Reactors for Continuous Decentralized H2 O2 Production
Abstract
The global utilization of H2 O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2 O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid-liquid extraction of H2 O2 . The energy-intensive and environmentally unfriendly anthraquinone process does not meet the requirements of sustainable and low-carbon development. The electrocatalytic two-electron (2 e- ) oxygen reduction reaction (ORR) driven by renewable energy (e.g. solar and wind power) offers a more economical, low-carbon, and greener route to produce H2 O2 . However, continuous and decentralized H2 O2 electrosynthesis still poses many challenges. This Minireview first summarizes the development of devices for H2 O2 electrosynthesis, and then introduces each component, the assembly process, and some optimization strategies.
Keywords: Continuous Production; Electrochemical Reactors; Electrosynthesis; Hydrogen Peroxide; Oxygen Reduction Reaction.
© 2022 Wiley-VCH GmbH.
Similar articles
-
Electrosynthesis of Hydrogen Peroxide through Selective Oxygen Reduction: A Carbon Innovation from Active Site Engineering to Device Design.Small. 2023 Oct;19(40):e2302338. doi: 10.1002/smll.202302338. Epub 2023 Jun 2. Small. 2023. PMID: 37267930 Review.
-
Tuning Two-Electron Oxygen-Reduction Pathways for H2 O2 Electrosynthesis via Engineering Atomically Dispersed Single Metal Site Catalysts.Adv Mater. 2022 Jun;34(23):e2107954. doi: 10.1002/adma.202107954. Epub 2022 Apr 3. Adv Mater. 2022. PMID: 35133688 Review.
-
Carbon-Based Electrocatalysts for Efficient Hydrogen Peroxide Production.Adv Mater. 2021 Dec;33(49):e2103266. doi: 10.1002/adma.202103266. Epub 2021 Sep 24. Adv Mater. 2021. PMID: 34562030 Review.
-
Electronic Structure Regulation of Single-Atom Catalysts for Electrochemical Oxygen Reduction to H2 O2.Small. 2022 Jan;18(3):e2103824. doi: 10.1002/smll.202103824. Epub 2021 Nov 2. Small. 2022. PMID: 34729914 Review.
-
Electrosynthesis of Hydrogen Peroxide Synergistically Catalyzed by Atomic Co-Nx -C Sites and Oxygen Functional Groups in Noble-Metal-Free Electrocatalysts.Adv Mater. 2019 Aug;31(35):e1808173. doi: 10.1002/adma.201808173. Epub 2019 Apr 10. Adv Mater. 2019. PMID: 30968470
Cited by
-
Single-zinc vacancy unlocks high-rate H2O2 electrosynthesis from mixed dioxygen beyond Le Chatelier principle.Nat Commun. 2024 May 16;15(1):4157. doi: 10.1038/s41467-024-48256-7. Nat Commun. 2024. PMID: 38755137 Free PMC article.
-
Optimization and scaling-up of porous solid electrolyte electrochemical reactors for hydrogen peroxide electrosynthesis.Nat Commun. 2025 Apr 4;16(1):3212. doi: 10.1038/s41467-025-58385-2. Nat Commun. 2025. PMID: 40180943 Free PMC article.
-
Electrocatalytic Hydrogenation Using Palladium Membrane Reactors.JACS Au. 2024 Jan 29;4(2):328-343. doi: 10.1021/jacsau.3c00647. eCollection 2024 Feb 26. JACS Au. 2024. PMID: 38425903 Free PMC article. Review.
-
CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid.Nat Commun. 2023 Aug 8;14(1):4766. doi: 10.1038/s41467-023-40467-8. Nat Commun. 2023. PMID: 37553335 Free PMC article.
-
Boosting the O2-to-H2O2 Selectivity Using Sn-Doped Carbon Electrocatalysts: Towards Highly Efficient Cathodes for Actual Water Decontamination.ChemSusChem. 2025 Feb 1;18(3):e202401758. doi: 10.1002/cssc.202401758. Epub 2024 Oct 25. ChemSusChem. 2025. PMID: 39250234 Free PMC article.
References
-
- R. Hage, A. Lienke, Angew. Chem. Int. Ed. 2006, 45, 206-222;
-
- Angew. Chem. 2006, 118, 212-229.
-
- None
-
- C. B. C. Raj, H. L. Quen, Chem. Eng. Sci. 2005, 60, 5305-5311;
-
- B. Jain, A. K. Singh, H. Kim, E. Lichtfouse, V. K. Sharma, Environ. Chem. Lett. 2018, 16, 947-967.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources