Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep:185:109063.
doi: 10.1016/j.steroids.2022.109063. Epub 2022 Jun 11.

MiR-221-5p/Smad3 axis in osteoclastogenesis and its function: Potential therapeutic target for osteoporosis

Affiliations

MiR-221-5p/Smad3 axis in osteoclastogenesis and its function: Potential therapeutic target for osteoporosis

Min Guo et al. Steroids. 2022 Sep.

Abstract

Objective: To probe the role of miR-221-5p in osteoclastogenesis and the underlying mechanism.

Methods: Serum from patients with postmenopausal osteoporosis and healthy controls was collected for determination of miR-221-5p expression. For in vitro experiment, RAW264.7 macrophages, in which the expression of miR-221-5p and/or Smad3 was altered, were induced by RANKL to differentiate into osteoclasts. For in vivo experiment, ovariectomy was performed to construct osteoporosis mouse models, followed by tail vein injection of miR-221-5p agomir. qRT-PCR and/or western blot were applied to measure the expression of miR-221-5p, Smad3, and osteoclastogenesis-related genes (NFATc1 and TRAF6). TRAP staining was utilized for assessment of osteoclast formation, MTT assay for assessment of osteoclast viability, and H&E staining for observation of histomorphological changes. The targeting relationship between miR-221-5p and Smad3 was verified by dual-luciferase reporter gene assay.

Results: Compared with healthy controls, patients with postmenopausal osteoporosis had decreased miR-221-5p expression and lower lumbar vertebra bone mineral density. MiR-221-5p expression was decreased and Smad3 level was increased during osteoclastogenesis. The osteoclastogenesis was suppressed by miR-221-5p and promoted by Smad3, as evidenced by diminished number and viability of osteoclasts following overexpression of miR-221-5p or knockdown of Smad3. MiR-221-5p negatively mediated Smad3 expression. Smad3 suppression nullified the pro-osteoclastogenesis effect of miR-221-5p inhibition. Consistent results were observed in osteoporosis mouse models.

Conclusion: MiR-221-5p may alleviate postmenopausal osteoporosis through suppressing osteoclastogenesis via Smad3, which provides new ideas for molecule-targeted therapy of osteoporosis.

Keywords: MiR-221-5p; Osteoclast; Postmenopausal osteoporosis; Smad3.

PubMed Disclaimer

LinkOut - more resources