Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2022 Sep;65(9):1436-1449.
doi: 10.1007/s00125-022-05734-1. Epub 2022 Jun 15.

Impact of diabetes on COVID-19 prognosis beyond comorbidity burden: the CORONADO initiative

Affiliations
Clinical Trial

Impact of diabetes on COVID-19 prognosis beyond comorbidity burden: the CORONADO initiative

Bertrand Cariou et al. Diabetologia. 2022 Sep.

Abstract

Aims/hypothesis: Diabetes has been recognised as a pejorative prognostic factor in coronavirus disease 2019 (COVID-19). Since diabetes is typically a disease of advanced age, it remains unclear whether diabetes remains a COVID-19 risk factor beyond advanced age and associated comorbidities. We designed a cohort study that considered age and comorbidities to address this question.

Methods: The Coronavirus SARS-CoV-2 and Diabetes Outcomes (CORONADO) initiative is a French, multicentric, cohort study of individuals with (exposed) and without diabetes (non-exposed) admitted to hospital with COVID-19, with a 1:1 matching on sex, age (±5 years), centre and admission date (10 March 2020 to 10 April 2020). Comorbidity burden was assessed by calculating the updated Charlson comorbidity index (uCCi). A predefined composite primary endpoint combining death and/or invasive mechanical ventilation (IMV), as well as these two components separately, was assessed within 7 and 28 days following hospital admission. We performed multivariable analyses to compare clinical outcomes between patients with and without diabetes.

Results: A total of 2210 pairs of participants (diabetes/no-diabetes) were matched on age (mean±SD 69.4±13.2/69.5±13.2 years) and sex (36.3% women). The uCCi was higher in individuals with diabetes. In unadjusted analysis, the primary composite endpoint occurred more frequently in the diabetes group by day 7 (29.0% vs 21.6% in the no-diabetes group; HR 1.43 [95% CI 1.19, 1.72], p<0.001). After multiple adjustments for age, BMI, uCCi, clinical (time between onset of COVID-19 symptoms and dyspnoea) and biological variables (eGFR, aspartate aminotransferase, white cell count, platelet count, C-reactive protein) on admission to hospital, diabetes remained associated with a higher risk of primary composite endpoint within 7 days (adjusted HR 1.42 [95% CI 1.17, 1.72], p<0.001) and 28 days (adjusted HR 1.30 [95% CI 1.09, 1.55], p=0.003), compared with individuals without diabetes. Using the same adjustment model, diabetes was associated with the risk of IMV, but not with risk of death, within 28 days of admission to hospital.

Conclusions/interpretation: Our results demonstrate that diabetes status was associated with a deleterious COVID-19 prognosis irrespective of age and comorbidity status.

Trial registration: ClinicalTrials.gov NCT04324736.

Keywords: COVID-19; Charlson index; Comorbidity; Death; Diabetes; Invasive mechanical ventilation; Prognosis.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Flow chart of study. aNon-inclusion criteria were not mutually exclusive; therefore, the same individual could be non-included for one or more reasons. CRF, case report form
Fig. 2
Fig. 2
Kaplan–Meier survival curves for the composite endpoint (a), death (b) and IMV (c) within 28 days according to diabetes status. p values were calculated using logrank test, within 28 days: p<0.0001 (a); p=0.16 (b); and p<0.0001 (c)

References

    1. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239–1242. doi: 10.1001/jama.2020.2648. - DOI - PubMed
    1. Barron E, Bakhai C, Kar P, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study. Lancet Diabetes Endocrinol. 2020;8(10):813–822. doi: 10.1016/S2213-8587(20)30272-2. - DOI - PMC - PubMed
    1. McGurnaghan SJ, Weir A, Bishop J, et al. Risks of and risk factors for COVID-19 disease in people with diabetes: a cohort study of the total population of Scotland. Lancet Diabetes Endocrinol. 2021;9(2):82–93. doi: 10.1016/S2213-8587(20)30405-8. - DOI - PMC - PubMed
    1. Lim S, Bae JH, Kwon H-S, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021;17(1):11–30. doi: 10.1038/s41574-020-00435-4. - DOI - PMC - PubMed
    1. Kornum JB, Thomsen RW, Riis A, Lervang H-H, Schønheyder HC, Sørensen HT. Diabetes, glycemic control, and risk of hospitalization with pneumonia: a population-based case-control study. Diabetes Care. 2008;31(8):1541–1545. doi: 10.2337/dc08-0138. - DOI - PMC - PubMed

Publication types

Associated data