Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep;28(17):5254-5268.
doi: 10.1111/gcb.16302. Epub 2022 Jun 28.

Tallo: A global tree allometry and crown architecture database

Tommaso Jucker  1 Fabian Jörg Fischer  1 Jérôme Chave  2   3 David A Coomes  4 John Caspersen  5 Arshad Ali  6 Grace Jopaul Loubota Panzou  7   8 Ted R Feldpausch  9 Daniel Falster  10 Vladimir A Usoltsev  11   12 Stephen Adu-Bredu  13 Luciana F Alves  14 Mohammad Aminpour  15 Ilondea B Angoboy  16 Niels P R Anten  17 Cécile Antin  18 Yousef Askari  19 Rodrigo Muñoz  20   21 Narayanan Ayyappan  22 Patricia Balvanera  23 Lindsay Banin  24 Nicolas Barbier  18 John J Battles  25 Hans Beeckman  26 Yannick E Bocko  8 Ben Bond-Lamberty  27 Frans Bongers  21 Samuel Bowers  28 Thomas Brade  28 Michiel van Breugel  29   30   31 Arthur Chantrain  7 Rajeev Chaudhary  32 Jingyu Dai  33 Michele Dalponte  34 Kangbéni Dimobe  35 Jean-Christophe Domec  36   37 Jean-Louis Doucet  7 Remko A Duursma  38 Moisés Enríquez  20 Karin Y van Ewijk  39 William Farfán-Rios  40 Adeline Fayolle  7 Eric Forni  41 David I Forrester  42 Hammad Gilani  43 John L Godlee  28 Sylvie Gourlet-Fleury  41 Matthias Haeni  44 Jefferson S Hall  30 Jie-Kun He  45 Andreas Hemp  46 José L Hernández-Stefanoni  47 Steven I Higgins  48 Robert J Holdaway  49 Kiramat Hussain  50 Lindsay B Hutley  51 Tomoaki Ichie  52 Yoshiko Iida  53 Hai-Sheng Jiang  45 Puspa Raj Joshi  54 Hasan Kaboli  55 Maryam Kazempour Larsary  56 Tanaka Kenzo  57 Brian D Kloeppel  58   59 Takashi Kohyama  60 Suwash Kunwar  32   61 Shem Kuyah  62 Jakub Kvasnica  63 Siliang Lin  64 Emily R Lines  65 Hongyan Liu  33 Craig Lorimer  66 Jean-Joël Loumeto  8 Yadvinder Malhi  67 Peter L Marshall  68 Eskil Mattsson  69   70 Radim Matula  71 Jorge A Meave  20 Sylvanus Mensah  72 Xiangcheng Mi  73 Stéphane Momo  18   74 Glenn R Moncrieff  75   76 Francisco Mora  23 Sarath P Nissanka  77 Kevin L O'Hara  25 Steven Pearce  78 Raphaël Pelissier  18 Pablo L Peri  79 Pierre Ploton  18 Lourens Poorter  21 Mohsen Javanmiri Pour  80 Hassan Pourbabaei  56 Juan Manuel Dupuy-Rada  47 Sabina C Ribeiro  81 Casey Ryan  28 Anvar Sanaei  82 Jennifer Sanger  78 Michael Schlund  83 Giacomo Sellan  84   85 Alexander Shenkin  67 Bonaventure Sonké  74 Frank J Sterck  21 Martin Svátek  63 Kentaro Takagi  86 Anna T Trugman  87 Farman Ullah  6   61 Matthew A Vadeboncoeur  88 Ahmad Valipour  89 Mark C Vanderwel  90 Alejandra G Vovides  91 Weiwei Wang  73 Li-Qiu Wang  61 Christian Wirth  92   93 Murray Woods  94 Wenhua Xiang  95 Fabiano de Aquino Ximenes  96 Yaozhan Xu  97   98 Toshihiro Yamada  99 Miguel A Zavala  100
Affiliations

Tallo: A global tree allometry and crown architecture database

Tommaso Jucker et al. Glob Chang Biol. 2022 Sep.

Abstract

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology-from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.

Keywords: allometric scaling; crown radius; forest biomass stocks; forest ecology; remote sensing; stem diameter; tree height.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Overview of the Tallo database, including (a) geographical coverage, (b–c) size range of sampled trees, (d) climatic range of the data and (e) taxonomic coverage in phylogenetic space. Panel (a) shows the total number of trees recorded in grid cells of approximately 200 × 200 km. In (b–d), the density of overlapping points is reflected by a colour gradient ranging from black (low point density) to yellow (high point density). Data on mean annual rainfall and temperature show in (d) were obtained from WorldClim2 database (Fick & Hijmans, 2017) at a spatial resolution of 30 arc‐seconds (approximately 1 km). Panel (e) shows a phylogenetic tree constructed from all species in the Tallo database (n = 5163). Branch tips have been colour coded to reflect the number of trees sampled for each species and the position of several seed plant families on the tree has been labelled. The phylogenetic tree was generated using the V.PhyloMaker package in R (Jin & Qian, 2019), the backbone of which is a phylogeny of 79,881 taxa of seed plants developed by Smith and Brown (2018).
FIGURE 2
FIGURE 2
Variation in height–diameter (a), crown radius–diameter (b) and crown radius–height (c) scaling exponents of angiosperm (filled circles) and gymnosperm (empty circle) trees growing in different biome types arranged according to their aridity index. Error bars denote both the 80% (thick lines) and the 95% confidence intervals (thin lines) of the parameter estimates. Grey horizonal lines indicate scaling exponents predicted by metabolic scaling theory. Biome classification follows that of Olson et al. (2001), while aridity was calculated as the ratio between mean annual precipitation and potential evapotranspiration and therefore ranges from arid at low values of the index to humid at higher values.
FIGURE 3
FIGURE 3
Variation in the height of a tree with a stem diameter of 30 cm (H D=30cm ) across a gradient of aridity. Each arrow corresponds to one of 342 species, with the beginning and end of the arrow indicating the species' predicted H D=30cm at the arid and humid end of its sampled distribution, respectively. Blue arrows denote species for which H D=30cm increased significantly as aridity decreased (n = 147), while those in red showed the opposite trend (n = 37). Aridity was calculated as the ratio between mean annual precipitation and potential evapotranspiration and ranges from arid at low values of the index to humid at higher values.
FIGURE 4
FIGURE 4
Global variation in the predicted height of large trees under current‐day climate (a) and projected relative changes in height under a future climate scenario (b). For each biome, the size threshold for ‘large trees’ was defined as the 99th percentile stem diameter value of trees in the Tallo database. Both current‐day and future climate data were obtained from the WorldClim2 database at 5‐minute resolution (Fick & Hijmans, 2017). CMIP6 future climate projections are for the period of 2061–2080 and were derived from the CNRM‐ESM2‐1 global climate model run under the shared socio‐economic pathway (SSP) 245. A map of potential forest cover (https://data.globalforestwatch.org/documents/potential‐forest‐coverage) was used to mask out areas deemed climatically unsuitable to support forests and woodlands, which are shown in dark grey.

References

    1. Aguirre‐Gutiérrez, J. , Rifai, S. , Shenkin, A. , Oliveras, I. , Bentley, L. P. , Svátek, M. , Girardin, C. A. J. , Both, S. , Riutta, T. , Berenguer, E. , Kissling, W. D. , Bauman, D. , Raab, N. , Moore, S. , Farfan‐Rios, W. , Figueiredo, A. E. S. , Reis, S. M. , Ndong, J. E. , Ondo, F. E. , … Malhi, Y. (2021). Pantropical modelling of canopy functional traits using Sentinel‐2 remote sensing data. Remote Sensing of Environment, 252, 112122. 10.1016/J.RSE.2020.112122 - DOI
    1. Anderson‐Teixeira, K. J. , McGarvey, J. C. , Muller‐Landau, H. C. , Park, J. Y. , Gonzalez‐Akre, E. B. , Herrmann, V. , Bennett, A. C. , So, C. V. , Bourg, N. A. , Thompson, J. R. , McMahon, S. M. , & McShea, W. J. (2015). Size‐related scaling of tree form and function in a mixed‐age forest. Functional Ecology, 29(12), 1587–1602. 10.1111/1365-2435.12470 - DOI
    1. Atkins, J. W. , Walter, J. A. , Stovall, A. E. L. , Fahey, R. T. , & Gough, C. M. (2022). Power law scaling relationships link canopy structural complexity and height across forest types. Functional Ecology, 36(3), 713–726. 10.1111/1365-2435.13983 - DOI
    1. Banin, L. , Feldpausch, T. R. , Phillips, O. L. , Baker, T. R. , Lloyd, J. , Affum‐Baffoe, K. , Arets, E. J. M. M. , Berry, N. J. , Bradford, M. , Brienen, R. J. W. , Davies, S. , Drescher, M. , Higuchi, N. , Hilbert, D. W. , Hladik, A. , Iida, Y. , Salim, K. A. , Kassim, A. R. , King, D. A. , … Lewis, S. L. (2012). What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography, 21, 1179–1190. 10.1111/j.1466-8238.2012.00778.x - DOI
    1. Bastin, J. F. , Rutishauser, E. , Kellner, J. R. , Saatchi, S. , Pélissier, R. , Hérault, B. , Slik, F. , Bogaert, J. , De Cannière, C. , Marshall, A. R. , Poulsen, J. , Alvarez‐Loyayza, P. , Andrade, A. , Angbonga‐Basia, A. , Araujo‐Murakami, A. , Arroyo, L. , Ayyappan, N. , de Azevedo, C. P. , Banki, O. , … Zebaze, D. (2018). Pan‐tropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 27(11), 1366–1383. 10.1111/geb.12803 - DOI