Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May;105(5-1):054801.
doi: 10.1103/PhysRevE.105.054801.

Spreading fronts of wetting liquid droplets: Microscopic simulations and universal fluctuations

Affiliations

Spreading fronts of wetting liquid droplets: Microscopic simulations and universal fluctuations

J M Marcos et al. Phys Rev E. 2022 May.

Abstract

We have used kinetic Monte Carlo (kMC) simulations of a lattice gas to study front fluctuations in the spreading of a nonvolatile liquid droplet onto a solid substrate. Our results are consistent with a diffusive growth law for the radius of the precursor layer, R∼t^{δ}, with δ≈1/2 in all the conditions considered for temperature and substrate wettability, in good agreement with previous studies. The fluctuations of the front exhibit kinetic roughening properties with exponent values which depend on temperature T, but become T independent for sufficiently high T. Moreover, strong evidence of intrinsic anomalous scaling has been found, characterized by different values of the roughness exponent at short and large length scales. Although such a behavior differs from the scaling properties of the one-dimensional Kardar-Parisi-Zhang (KPZ) universality class, the front covariance and the probability distribution function of front fluctuations found in our kMC simulations do display KPZ behavior, agreeing with simulations of a continuum height equation proposed in this context. However, this equation does not feature intrinsic anomalous scaling, at variance with the discrete model.

PubMed Disclaimer