An elastic-net penalized expectile regression with applications
- PMID: 35706613
- PMCID: PMC9041692
- DOI: 10.1080/02664763.2020.1787355
An elastic-net penalized expectile regression with applications
Abstract
To perform variable selection in expectile regression, we introduce the elastic-net penalty into expectile regression and propose an elastic-net penalized expectile regression (ER-EN) model. We then adopt the semismooth Newton coordinate descent (SNCD) algorithm to solve the proposed ER-EN model in high-dimensional settings. The advantages of ER-EN model are illustrated via extensive Monte Carlo simulations. The numerical results show that the ER-EN model outperforms the elastic-net penalized least squares regression (LSR-EN), the elastic-net penalized Huber regression (HR-EN), the elastic-net penalized quantile regression (QR-EN) and conventional expectile regression (ER) in terms of variable selection and predictive ability, especially for asymmetric distributions. We also apply the ER-EN model to two real-world applications: relative location of CT slices on the axial axis and metabolism of tacrolimus (Tac) drug. Empirical results also demonstrate the superiority of the ER-EN model.
Keywords: 62J05; Expectile regression; SNCD; elastic-net; high-dimensional data; variable selection.
© 2020 Informa UK Limited, trading as Taylor & Francis Group.
Conflict of interest statement
No potential conflict of interest was reported by the authors.
Figures






Similar articles
-
Modeling physical activity data using L0 -penalized expectile regression.Biom J. 2019 Nov;61(6):1371-1384. doi: 10.1002/bimj.201800007. Epub 2019 Jun 6. Biom J. 2019. PMID: 31172553
-
Right-censored models by the expectile method.Lifetime Data Anal. 2025 Jan;31(1):149-186. doi: 10.1007/s10985-024-09643-w. Epub 2025 Jan 3. Lifetime Data Anal. 2025. PMID: 39752001
-
Weighted Expectile Regression Neural Networks for Right Censored Data.Stat Med. 2024 Nov 30;43(27):5100-5114. doi: 10.1002/sim.10221. Epub 2024 Sep 29. Stat Med. 2024. PMID: 39343041
-
Practical issues in screening and variable selection in genome-wide association analysis.Cancer Inform. 2015 Jan 14;13(Suppl 7):55-65. doi: 10.4137/CIN.S16350. eCollection 2014. Cancer Inform. 2015. PMID: 25635166 Free PMC article. Review.
-
Penalized least squares regression methods and applications to neuroimaging.Neuroimage. 2011 Apr 15;55(4):1519-27. doi: 10.1016/j.neuroimage.2010.12.028. Epub 2010 Dec 15. Neuroimage. 2011. PMID: 21167288 Free PMC article. Review.
Cited by
-
Machine learning predictive model for aspiration screening in hospitalized patients with acute stroke.Sci Rep. 2023 May 15;13(1):7835. doi: 10.1038/s41598-023-34999-8. Sci Rep. 2023. PMID: 37188793 Free PMC article.
-
Posture Estimation Model Combined With Machine Learning Estimates the Radial Abduction Angle of the Thumb With High Accuracy.Cureus. 2024 Oct 7;16(10):e71034. doi: 10.7759/cureus.71034. eCollection 2024 Oct. Cureus. 2024. PMID: 39512988 Free PMC article.
-
Radiomic Machine Learning in Invasive Ductal Breast Cancer: Prediction of Ki-67 Expression Level Based on Radiomics of DCE-MRI.Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241288751. doi: 10.1177/15330338241288751. Technol Cancer Res Treat. 2024. PMID: 39431304 Free PMC article.
-
A new GEE method to account for heteroscedasticity using asymmetric least-square regressions.J Appl Stat. 2021 Jul 26;49(14):3564-3590. doi: 10.1080/02664763.2021.1957789. eCollection 2022. J Appl Stat. 2021. PMID: 36246864 Free PMC article.
References
-
- Aigner D.J., Amemiya T., and Poirier D.J., On the estimation of production frontiers: maximum likelihood estimation of the parameters of a discontinuous density function, Int. Econ. Rev. (Philadelphia) 17 (1976), pp. 377–396. doi: 10.2307/2525708 - DOI
-
- Alhamzawi R., Conjugate priors and variable selection for bayesian quantile regression, Comput. Stat. Data Anal. 64 (2013), pp. 209–219. doi: 10.1016/j.csda.2012.01.014 - DOI
-
- Alhamzawi R., Yu K., and Benoit D.F., Bayesian adaptive lasso quantile regression, Stat. Model. 12 (2012), pp. 279–297. doi: 10.1177/1471082X1101200304 - DOI
-
- Alshaybawee T., Alhamzawi R., Midi H., and Allyas I.I., Bayesian variable selection and coefficient estimation in heteroscedastic linear regression model, J. Appl. Stat. 45 (2018), pp. 2643–2657. doi: 10.1080/02664763.2018.1432576 - DOI
-
- Alshaybawee T., Midi H., and Alhamzawi R., Bayesian elastic net single index quantile regression, J. Appl. Stat. 44 (2017), pp. 853–871. doi: 10.1080/02664763.2016.1189515 - DOI
Publication types
LinkOut - more resources
Full Text Sources
Research Materials