Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 2;31(9):1735-1745.
doi: 10.1158/1055-9965.EPI-22-0096.

eQTL Set-Based Association Analysis Identifies Novel Susceptibility Loci for Barrett Esophagus and Esophageal Adenocarcinoma

Xiaoyu Wang  1 Puya Gharahkhani  2 David M Levine  3 Rebecca C Fitzgerald  4 Ines Gockel  5 Douglas A Corley  6   7 Harvey A Risch  8 Leslie Bernstein  9 Wong-Ho Chow  10 Lynn Onstad  1 Nicholas J Shaheen  11 Jesper Lagergren  12   13 Laura J Hardie  14 Anna H Wu  15 Paul D P Pharoah  16   17 Geoffrey Liu  18 Lesley A Anderson  19 Prasad G Iyer  20 Marilie D Gammon  21 Carlos Caldas  22 Weimin Ye  12 Hugh Barr  23 Paul Moayyedi  24 Rebecca Harrison  25 R G Peter Watson  26 Stephen Attwood  27 Laura Chegwidden  28 Sharon B Love  29 David MacDonald  30 John deCaestecker  31 Hans Prenen  32 Katja Ott  33   34 Susanne Moebus  35 Marino Venerito  36 Hauke Lang  37 Rupert Mayershofer  38 Michael Knapp  39 Lothar Veits  40 Christian Gerges  41 Josef Weismüller  42 Matthias Reeh  43 Markus M Nöthen  44 Jakob R Izbicki  45 Hendrik Manner  46 Horst Neuhaus  41 Thomas Rösch  47 Anne C Böhmer  44 Arnulf H Hölscher  48 Mario Anders  47   49 Oliver Pech  50 Brigitte Schumacher  41   51 Claudia Schmidt  52 Thomas Schmidt  33 Tania Noder  47 Dietmar Lorenz  53 Michael Vieth  40 Andrea May  54 Timo Hess  55 Nicole Kreuser  5 Jessica Becker  44 Christian Ell  56 Ian Tomlinson  57 Claire Palles  58 Janusz A Jankowski  59 David C Whiteman  60 Stuart MacGregor  2 Johannes Schumacher  55 Thomas L Vaughan  1   61 Matthew F Buas  62 James Y Dai  1   3
Affiliations

eQTL Set-Based Association Analysis Identifies Novel Susceptibility Loci for Barrett Esophagus and Esophageal Adenocarcinoma

Xiaoyu Wang et al. Cancer Epidemiol Biomarkers Prev. .

Abstract

Background: Over 20 susceptibility single-nucleotide polymorphisms (SNP) have been identified for esophageal adenocarcinoma (EAC) and its precursor, Barrett esophagus (BE), explaining a small portion of heritability.

Methods: Using genetic data from 4,323 BE and 4,116 EAC patients aggregated by international consortia including the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON), we conducted a comprehensive transcriptome-wide association study (TWAS) for BE/EAC, leveraging Genotype Tissue Expression (GTEx) gene-expression data from six tissue types of plausible relevance to EAC etiology: mucosa and muscularis from the esophagus, gastroesophageal (GE) junction, stomach, whole blood, and visceral adipose. Two analytical approaches were taken: standard TWAS using the predicted gene expression from local expression quantitative trait loci (eQTL), and set-based SKAT association using selected eQTLs that predict the gene expression.

Results: Although the standard approach did not identify significant signals, the eQTL set-based approach identified eight novel associations, three of which were validated in independent external data (eQTL SNP sets for EXOC3, ZNF641, and HSP90AA1).

Conclusions: This study identified novel genetic susceptibility loci for EAC and BE using an eQTL set-based genetic association approach.

Impact: This study expanded the pool of genetic susceptibility loci for EAC and BE, suggesting the potential of the eQTL set-based genetic association approach as an alternative method for TWAS analysis.

PubMed Disclaimer

Conflict of interest statement

Disclosure of Interest: The authors report no conflict of interest.

Figures

Figure 1.
Figure 1.
Predictive eQTL models for gene expression across 6 tissues in GTEx. (a) Violin plots for R2 estimates for genes with R2≥0.01. (b) Venn diagram of genes with R2≥0.01 in three esophageal tissues in GTEx.
Figure 2.
Figure 2.
Manhattan plots for p-values derived from two methods: eQTL set-based association by SKAT (top); standard TWAS using predicted gene expression (bottom). (a) BE versus control. (b) EA versus control. (c) BE/EA vs control. The line for FDR=0.05 is based on all three trait associations.
Figure 3.
Figure 3.
Regional plots for novel loci that were discovered in Beacon/Cambridge discovery set and validated in Bonn data. (a) eQTLs of EXOC3 in discovery. (b) eQTLs of EXOC3 in validation. (c) eQTLs of ZNF641 in discovery. (d) eQTLs of ZNF641 in validation. (e) eQTLs of HSP90AA1 in discovery. (f) eQTLs of HSP90AA1 in validation.

References

    1. Thrift AP, Whiteman DC. The incidence of esophageal adenocarcinoma continues to rise: analysis of period and birth cohort effects on recent trends. Ann Oncol 2012;23(12):3155–62 doi 10.1093/annonc/mds181. - DOI - PubMed
    1. Holmes RS, Vaughan TL. Epidemiology and pathogenesis of esophageal cancer. Semin Radiat Oncol 2007;17(1):2–9 doi 10.1016/j.semradonc.2006.09.003. - DOI - PubMed
    1. Steevens J, Botterweck AA, Dirx MJ, van den Brandt PA, Schouten LJ. Trends in incidence of oesophageal and stomach cancer subtypes in Europe. Eur J Gastroenterol Hepatol 2010;22(6):669–78 doi 10.1097/MEG.0b013e32832ca091. - DOI - PubMed
    1. Coleman HG, Xie SH, Lagergren J. The Epidemiology of Esophageal Adenocarcinoma. Gastroenterology 2018;154(2):390–405 doi 10.1053/j.gastro.2017.07.046. - DOI - PubMed
    1. Njei B, McCarty TR, Birk JW. Trends in esophageal cancer survival in United States adults from 1973 to 2009: A SEER database analysis. J Gastroenterol Hepatol 2016;31(6):1141–6 doi 10.1111/jgh.13289. - DOI - PMC - PubMed

Publication types

MeSH terms

Supplementary concepts