Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jun 25;54(6):836-846.
doi: 10.3724/abbs.2022071.

SARS-CoV-2 infection in patients with inborn errors of immunity due to DNA repair defects

Review

SARS-CoV-2 infection in patients with inborn errors of immunity due to DNA repair defects

Yating Wang et al. Acta Biochim Biophys Sin (Shanghai). .

Abstract

Clinical information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with inborn errors of immunity (IEI) during the current Coronavirus disease 2019 (COVID-19) pandemic is still limited. Proper DNA repair machinery is required for the development of the adaptive immune system, which provides specific and long-term protection against SARS-CoV-2. This review highlights the impact of SARS-CoV-2 infections on IEI patients with DNA repair disorders and summarizes susceptibility risk factors, pathogenic mechanisms, clinical manifestations and management strategies of COVID-19 in this special patient population.

Keywords: COVID-19; DNA repair mechanism; inborn errors of immunity; primary immunodeficiency.

PubMed Disclaimer

Conflict of interest statement

The authors declared that they have no conflict of interest.

Figures

None
Figure 1
Comparison of the innate immune response to SARS-CoV-2 between normal host cells and DNA repair protein defective host cells In normal host cells (left), following infection of SARS-CoV-2, RIG-1-MDA-5 senses cytosolic dsRNA, TLR7/8/3 sense ssRNA and dsRNA, respectively. Subsequently MYD88 and TBK1-IKK activate IRF3/IRF7 and regulate ISRE7/8 expression, leading to the expression of type I IFN. Type I IFN then primes an antiviral programme in both infected cells and neighboring cells through IFNAR1/2 by regulating the expression of IFN-stimulated genes. In DNA repair protein defective host cells (right), before SARS-CoV-2 infection, unrepaired DNA damages induce cytoplasmic DNA accumulation. Following the recognition by the RAD50-CARD9 and DNA-PK-Ku complexes, the type I IFN system is primed via the STING pathway. Overactivation of type I IFN promotes antiviral activity and reduces virus replication. IRF3: transcription factors interferon (IFN)-regulatory factor 3; TLR: Toll-like receptors (TLRs); IFNAR1/2: interferon-α receptor; TBK1: TANK-binding kinase 1; IKK: IkappaB kinase; DNA-PK: DNA-dependent protein kinase; Ku: Ku70-Ku80 heterodimer; RAD50: DNA repair protein RAD50; CARD9: Caspase recruitment domain family member 9; cGMP-AMP: cyclic guanosine monophosphate-adenosine monophosphate; STING: Stimulator of interferon genes.
None
Figure 2
Comparison of the adaptive immune responses to SARS-CoV-2 between normal host cells and DNA repair protein defective host cells (A) The process of SARS-CoV-2 priming of the adaptive immune response in the lung is depicted. (B) The comparison of adaptive immune responses in normal immune cells and DNA repair protein-deficient cells is highlighted. Tfh: T follicular helper cells; TCR: T cell receptor; MHC: major histocompatibility complex.
None
Figure 3
Comparison of the infected patients and deceased patients with IEI associated with DNA repair gene defects (detailed in Supplementary Table S1)

Similar articles

  • Coronavirus disease 2019 in patients with inborn errors of immunity: An international study.
    Meyts I, Bucciol G, Quinti I, Neven B, Fischer A, Seoane E, Lopez-Granados E, Gianelli C, Robles-Marhuenda A, Jeandel PY, Paillard C, Sankaran VG, Demirdag YY, Lougaris V, Aiuti A, Plebani A, Milito C, Dalm VA, Guevara-Hoyer K, Sánchez-Ramón S, Bezrodnik L, Barzaghi F, Gonzalez-Granado LI, Hayman GR, Uzel G, Mendonça LO, Agostini C, Spadaro G, Badolato R, Soresina A, Vermeulen F, Bosteels C, Lambrecht BN, Keller M, Mustillo PJ, Abraham RS, Gupta S, Ozen A, Karakoc-Aydiner E, Baris S, Freeman AF, Yamazaki-Nakashimada M, Scheffler-Mendoza S, Espinosa-Padilla S, Gennery AR, Jolles S, Espinosa Y, Poli MC, Fieschi C, Hauck F, Cunningham-Rundles C, Mahlaoui N; IUIS Committee of Inborn Errors of Immunity; Warnatz K, Sullivan KE, Tangye SG. Meyts I, et al. J Allergy Clin Immunol. 2021 Feb;147(2):520-531. doi: 10.1016/j.jaci.2020.09.010. Epub 2020 Sep 24. J Allergy Clin Immunol. 2021. PMID: 32980424 Free PMC article.
  • Impact of SARS-CoV-2 infection and COVID-19 on patients with inborn errors of immunity.
    Tangye SG; COVID Human Genetic Effort consortium. Tangye SG, et al. J Allergy Clin Immunol. 2023 Apr;151(4):818-831. doi: 10.1016/j.jaci.2022.11.010. Epub 2022 Dec 13. J Allergy Clin Immunol. 2023. PMID: 36522221 Free PMC article. Review.
  • Coronavirus disease 2019 in patients with inborn errors of immunity: lessons learned.
    Bucciol G, Tangye SG, Meyts I. Bucciol G, et al. Curr Opin Pediatr. 2021 Dec 1;33(6):648-656. doi: 10.1097/MOP.0000000000001062. Curr Opin Pediatr. 2021. PMID: 34734915 Free PMC article. Review.
  • Outcome of SARS-CoV-2 Infection in 121 Patients with Inborn Errors of Immunity: A Cross-Sectional Study.
    Goudouris ES, Pinto-Mariz F, Mendonça LO, Aranda CS, Guimarães RR, Kokron C, Barros MT, Anísio F, Alonso MLO, Marcelino F, Valle SOR, Junior SD, Barreto IDP, Ferreira JFS, Roxo-Junior P, do Rego Silva AM, Campinhos FL, Bonfim C, Loth G, Fernandes JF, Garcia JL, Capelo A, Takano OA, Nadaf MIV, Toledo EC, Cunha LAO, Di Gesu RSW, Schidlowski L, Fillipo P, Bichuetti-Silva DC, Soldateli G, Ferraroni NR, de Oliveira Dantas E, Pestana S, Mansour E, Ulaf RG, Prando C, Condino-Neto A, Grumach AS. Goudouris ES, et al. J Clin Immunol. 2021 Oct;41(7):1479-1489. doi: 10.1007/s10875-021-01066-8. Epub 2021 Jun 23. J Clin Immunol. 2021. PMID: 34164762 Free PMC article.
  • COVID-19 in the Context of Inborn Errors of Immunity: a Case Series of 31 Patients from Mexico.
    Castano-Jaramillo LM, Yamazaki-Nakashimada MA, O'Farrill-Romanillos PM, Muzquiz Zermeño D, Scheffler Mendoza SC, Venegas Montoya E, García Campos JA, Sánchez-Sánchez LM, Gámez González LB, Ramírez López JM, Bustamante Ogando JC, Vásquez-Echeverri E, Medina Torres EA, Lopez-Herrera G, Blancas Galicia L, Berrón Ruiz L, Staines-Boone AT, Espinosa-Padilla SE, Segura Mendez NH, Lugo Reyes SO. Castano-Jaramillo LM, et al. J Clin Immunol. 2021 Oct;41(7):1463-1478. doi: 10.1007/s10875-021-01077-5. Epub 2021 Jun 10. J Clin Immunol. 2021. PMID: 34114122 Free PMC article.

Cited by

References

    1. Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen MC, O’Mahony L, et al. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy. . 2020;75:1564–1581. doi: 10.1111/all.14364. - DOI - PMC - PubMed
    1. Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. . 2020;41:1141–1149. doi: 10.1038/s41401-020-0485-4. - DOI - PMC - PubMed
    1. Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, Yu F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Sig Transduct Target Ther. . 2021;6:233. doi: 10.1038/s41392-021-00653-w. - DOI - PMC - PubMed
    1. V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. . 2021;19:155–170. doi: 10.1038/s41579-020-00468-6. - DOI - PMC - PubMed
    1. Ascough S, Paterson S, Chiu C. Induction and subversion of human protective immunity: contrasting influenza and respiratory syncytial virus. Front Immunol. . 2018;9:323. doi: 10.3389/fimmu.2018.00323. - DOI - PMC - PubMed