Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2022 Sep;102(3):624-639.
doi: 10.1016/j.kint.2022.05.021. Epub 2022 Jun 16.

Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies

Mathias Gorski  1 Humaira Rasheed  2 Alexander Teumer  3 Laurent F Thomas  4 Sarah E Graham  5 Gardar Sveinbjornsson  6 Thomas W Winkler  7 Felix Günther  8 Klaus J Stark  7 Jin-Fang Chai  9 Bamidele O Tayo  10 Matthias Wuttke  11 Yong Li  12 Adrienne Tin  13 Tarunveer S Ahluwalia  14 Johan Ärnlöv  15 Bjørn Olav Åsvold  16 Stephan J L Bakker  17 Bernhard Banas  18 Nisha Bansal  19 Mary L Biggs  20 Ginevra Biino  21 Michael Böhnke  22 Eric Boerwinkle  23 Erwin P Bottinger  24 Hermann Brenner  25 Ben Brumpton  26 Robert J Carroll  27 Layal Chaker  28 John Chalmers  29 Miao-Li Chee  30 Miao-Ling Chee  30 Ching-Yu Cheng  31 Audrey Y Chu  32 Marina Ciullo  33 Massimiliano Cocca  34 James P Cook  35 Josef Coresh  36 Daniele Cusi  37 Martin H de Borst  17 Frauke Degenhardt  38 Kai-Uwe Eckardt  39 Karlhans Endlich  40 Michele K Evans  41 Mary F Feitosa  42 Andre Franke  38 Sandra Freitag-Wolf  43 Christian Fuchsberger  44 Piyush Gampawar  45 Ron T Gansevoort  17 Mohsen Ghanbari  46 Sahar Ghasemi  47 Vilmantas Giedraitis  48 Christian Gieger  49 Daniel F Gudbjartsson  50 Stein Hallan  51 Pavel Hamet  52 Asahi Hishida  53 Kevin Ho  54 Edith Hofer  55 Bernd Holleczek  56 Hilma Holm  6 Anselm Hoppmann  12 Katrin Horn  57 Nina Hutri-Kähönen  58 Kristian Hveem  59 Shih-Jen Hwang  60 M Arfan Ikram  61 Navya Shilpa Josyula  62 Bettina Jung  63 Mika Kähönen  64 Irma Karabegović  61 Chiea-Chuen Khor  65 Wolfgang Koenig  66 Holly Kramer  67 Bernhard K Krämer  68 Brigitte Kühnel  69 Johanna Kuusisto  70 Markku Laakso  70 Leslie A Lange  71 Terho Lehtimäki  72 Man Li  73 Wolfgang Lieb  74 Lifelines Cohort StudyLars Lind  75 Cecilia M Lindgren  76 Ruth J F Loos  77 Mary Ann Lukas  78 Leo-Pekka Lyytikäinen  72 Anubha Mahajan  79 Pamela R Matias-Garcia  80 Christa Meisinger  81 Thomas Meitinger  82 Olle Melander  83 Yuri Milaneschi  84 Pashupati P Mishra  72 Nina Mononen  72 Andrew P Morris  85 Josyf C Mychaleckyj  86 Girish N Nadkarni  87 Mariko Naito  88 Masahiro Nakatochi  89 Mike A Nalls  90 Matthias Nauck  91 Kjell Nikus  92 Boting Ning  93 Ilja M Nolte  94 Teresa Nutile  95 Michelle L O'Donoghue  96 Jeffrey O'Connell  97 Isleifur Olafsson  98 Marju Orho-Melander  99 Afshin Parsa  100 Sarah A Pendergrass  101 Brenda W J H Penninx  84 Mario Pirastu  102 Michael H Preuss  103 Bruce M Psaty  104 Laura M Raffield  105 Olli T Raitakari  106 Myriam Rheinberger  63 Kenneth M Rice  107 Federica Rizzi  108 Alexander R Rosenkranz  109 Peter Rossing  110 Jerome I Rotter  111 Daniela Ruggiero  33 Kathleen A Ryan  112 Charumathi Sabanayagam  113 Erika Salvi  114 Helena Schmidt  45 Reinhold Schmidt  115 Markus Scholz  57 Ben Schöttker  25 Christina-Alexandra Schulz  99 Sanaz Sedaghat  116 Christian M Shaffer  27 Karsten B Sieber  117 Xueling Sim  9 Mario Sims  118 Harold Snieder  94 Kira J Stanzick  7 Unnur Thorsteinsdottir  119 Hannah Stocker  25 Konstantin Strauch  120 Heather M Stringham  22 Patrick Sulem  6 Silke Szymczak  121 Kent D Taylor  111 Chris H L Thio  94 Johanne Tremblay  122 Simona Vaccargiu  102 Pim van der Harst  123 Peter J van der Most  94 Niek Verweij  124 Uwe Völker  125 Kenji Wakai  53 Melanie Waldenberger  126 Lars Wallentin  127 Stefan Wallner  128 Judy Wang  42 Dawn M Waterworth  117 Harvey D White  129 Cristen J Willer  130 Tien-Yin Wong  113 Mark Woodward  131 Qiong Yang  93 Laura M Yerges-Armstrong  117 Martina Zimmermann  7 Alan B Zonderman  41 Tobias Bergler  18 Kari Stefansson  119 Carsten A Böger  63 Cristian Pattaro  132 Anna Köttgen  133 Florian Kronenberg  134 Iris M Heid  135
Affiliations
Meta-Analysis

Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies

Mathias Gorski et al. Kidney Int. 2022 Sep.

Abstract

Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic cross-section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03-1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.

Keywords: acute kidney injury; chronic kidney disease; diabetes; gene expression.

PubMed Disclaimer

Conflict of interest statement

All other authors declared no competing interests.

Figures

Figure 1:
Figure 1:. Eleven loci identified by GWAS for eGFR-decline unadjusted and/or adjusted for eGFR-baseline.
We conducted GWAS for eGFR-decline baseline-unadjusted and baseline-adjusted (n up to 343,339 or 320,737, respectively). Shown are association P-values versus genomic position, identified loci annotated by nearest gene: (A) association for eGFR-decline baseline-unadjusted identified one genome-wide significant locus for decline (P<5×108) and two Bonferroni-corrected significant loci among the 263 lead variants for cross-sectional eGFR outside of UMOD-PDILT (red dots, P<0.05/263=1.90×10−4; known locus for decline marked in blue; novel loci for this phenotype in orange); (B) association for eGFR-decline baseline-adjusted identified 8 additional loci (novel loci marked in green; known loci or loci already identified in (A) marked in blue). Altogether, 11 loci were identified with genome-wide significance for eGFR-decline unadjusted and/or adjusted for eGFR-baseline.
Figure 2:
Figure 2:. Relationship of SNP-effects on eGFR-decline baseline-unadjusted with baseline-adjusted effects for the 12 identified variants.
Shown are: (A) SNP-effects per year and allele for eGFR-decline baseline-unadjusted (“decline”) versus eGFR-decline baseline-adjusted in all studies (ndecline=343,339; ndecline-adj=320,737) and restricted to studies where baseline-adjusted results were computed rather than formula-derived (inserted panel, n=103,970); red line indicates identify line); (B) standardized SNP-effects per year and allele for eGFR-decline baseline-unadjusted (β^DECLINE/sdDECLINE, n=343,339) and per allele for cross-sectional eGFR on ln-scale (β^BL/sdBL, n=765,348 ); grey line indicates phenotype correlation line y=0.34*x (0.34=mean phenotype correlation across studies). For A&B: coding allele is the faster-decline allele (=cross-sectional eGFR-lowering allele). Color codes whether SNP was identified for decline baseline-unadjusted and/or baseline-adjusted. (C) Illustration of the SNP-effect for eGFR-decline baseline-adjusted (standardized to Y-scale) as a sum of the SNP-effect baseline-unadjusted (standardized) and the correlation-weighted SNP-effect on eGFR at baseline (standardized).
Figure 3:
Figure 3:. Relationship of SNP-by-age interaction effects for eGFRcys with those of eGFRcrea and with SNP-effects for eGFR-decline for the 12 identified variants.
Shown are SNP-by-age interaction effect sizes per year and allele for cross-sectional eGFRcys (UK Biobank individuals independent from GWAS, nSNPxage=351,601; main age effect modelled non-linearly, main SNP-effect linearly, age effect and SNP effect in interaction term linearly, age centered at 50 years) versus: (A) SNP-by-age interaction effects on cross-sectional eGFRcrea (nSNPxage=351,462), (B) SNP-effects on eGFR-decline baseline-unadjusted per year and allele (ndecline=343,339). Coding allele is the faster-decline allele (=cross-sectional eGFR-lowering allele); color code as in Figure 2; red line indicates identity line; symbol types code significance of interaction term (P< 0.05/12). Among the 9 SNPs with genuine eGFR-decline association, 7 SNPs showed interaction for eGFRcrea or eGFRcys (all negative), and all 3 SNPs without genuine eGFR-decline association showed no interaction for eGFRcys (one with positive significant interaction for eGFRcrea).
Figure 4:
Figure 4:. A concept for three classes of SNP-associations on cross-sectional eGFR distinguished by the presence and direction of the SNP-association with eGFR-decline.
Let A/a be the genotype group of individuals with, on average, lower cross-sectional eGFR compared to a/a (A=effect allele). Let’s further assume that eGFR-declines monotonously by age (approximated as linear decline) and that there is no “cross-over” between genotype groups. Shown are (left) a graphical scheme, (middle) the theoretical association, (right) the observed SNPs in line with the respective class. In the three graphical schemes, black lines illustrate mean eGFR-decline by genotype group; SNP-effects on eGFR for these individuals captured cross-sectionally at different ages are magenta. When a cross-sectional study captures individuals of relevant ages, the SNP-effects on eGFR should show an interaction by age for class II and class III SNPs (positive and negative, respectively). The 9 variants with genuine eGFR-decline association were class III, while the other 3 variants were class I.
Figure 5:
Figure 5:. Data, analyses, and results in a nutshell.

Comment in

References

    1. Levey AS, Coresh J, Tighiouart H, Greene T, Inker LA. Measured and estimated glomerular filtration rate: current status and future directions. Nat Rev Nephrol. 2020;16(1):51–64. - PubMed
    1. Andrassy KM. Comments on “KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease.” Kidney Int. 2013;84(3):622–623. - PubMed
    1. Eckardt K-U, Coresh J, Devuyst O, et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet (London, England). 2013;382(9887):158–169. - PubMed
    1. Neuen BL, Weldegiorgis M, Herrington WG, Ohkuma T, Smith M, Woodward M. Changes in GFR and Albuminuria in Routine Clinical Practice and the Risk of Kidney Disease Progression. Am J Kidney Dis. 2021;78(3):350–360.e1. - PubMed
    1. Meguid El Nahas A, Bello AK. Chronic kidney disease: the global challenge. Lancet (London, England). 2005;365(9456):331–340. - PubMed

Publication types

Substances

Grants and funding