Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May;29(2):113-122.
doi: 10.11005/jbm.2022.29.2.113. Epub 2022 May 31.

Bone Marrow Adiposity, Bone Mineral Density and Wnt/β-catenin Pathway Inhibitors Levels in Hemodialysis Patients

Affiliations

Bone Marrow Adiposity, Bone Mineral Density and Wnt/β-catenin Pathway Inhibitors Levels in Hemodialysis Patients

Yue-Pei Wang et al. J Bone Metab. 2022 May.

Abstract

Background: Marrow adipose tissue (MAT) is known to accumulate in patients with chronic kidney disease. This pilot study aimed to evaluate bone mineral density (BMD), MAT, visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) using computed tomography (CT) scans and to explore correlations between bone parameters, circulating Wnt/β-catenin pathway inhibitor levels, and adipose tissue parameters.

Methods: Single-center cross-sectional pilot study conducted in hemodialysis patients at the Centre Universitaire de Québec, Hôtel-Dieu de Québec hospital, Canada. CT-scan slices were acquired at the levels of the hip, L3 vertebra, and tibia. Volumetric and areal BMD, tibia cortical thickness, VAT and SAT area, and fat marrow index (FMI) were analyzed using the Mindways QCT Pro software. Blood levels of sclerostin, dickkopf-related protein 1 (DKK1), fibroblast growth factor 23, and α-Klotho were assessed. Spearman's rho test was used to evaluate correlations.

Results: Fifteen hemodialysis patients (median age, 75 [66-82] years; 80% male; dialysis vintage, 39.3 [27.4-71.0] months) were included. While inverse correlations were obtained between L3 FMI and BMD, positive correlations were found between proximal tibial FMI and vertebral and tibial BMD, as well as with tibial (proximal and distal) cortical thickness. VAT had a positive correlation with α-Klotho levels, whereas L3 FMI had a negative correlation with DKK1 levels.

Conclusions: CT-scan allows simultaneous evaluation of bone and marrow adiposity in dialysis patients. Correlations between MAT and BMD vary depending on the bone site evaluated. DKK1 and α-Klotho levels correlate with adipose tissue accumulation in dialysis patients.

Keywords: Bone density; Bone marrow cells; Hemodialysis; Quantitative computed tomography; Wnt/B-catenin pathway inhibitors.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Figures

Fig. 1
Fig. 1
Example of marrow adipose tissue analysis at L3 vertebra. (A) Analysis at L3 with 80 kVp. (B) Analysis at L3 with 140 kVp.
Fig. 2
Fig. 2
Example of abdominal tissue composition analysis at L3. (A) The 140 kVp L3 slice with calibration phantom, (B) 140 kVp L3 slice with tissue composition analysis, and (C) 140 kVp distal tibia slice with tissue composition analysis.

References

    1. Mares J, Ohlidalova K, Opatrna S, et al. Determinants of prevalent vertebral fractures and progressive bone loss in long-term hemodialysis patients. J Bone Miner Metab. 2009;27:217–23. doi: 10.1007/s00774-008-0030-x. - DOI - PubMed
    1. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32:S112–9. doi: 10.1053/ajkd.1998.v32.pm9820470. - DOI - PubMed
    1. Kiel DP, Kauppila LI, Cupples LA, et al. Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int. 2001;68:271–6. doi: 10.1007/bf02390833. - DOI - PubMed
    1. Rodriguez Garcia M, Naves Diaz M, Cannata Andia JB. Bone metabolism, vascular calcifications and mortality: associations beyond mere coincidence. J Nephrol. 2005;18:458–63. - PubMed
    1. Moe S, Drüeke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: Improving Global Outcomes (KDIGO) Kidney Int. 2006;69:1945–53. doi: 10.1038/sj.ki.5000414. - DOI - PubMed