An official website of the United States government
The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you’re on a federal
government site.
The site is secure.
The https:// ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
Figure 1.. Deactivating PTBP1 in astrocytes fails…
Figure 1.. Deactivating PTBP1 in astrocytes fails to convert the cells into neurons.
( A …
Figure 1.. Deactivating PTBP1 in astrocytes fails to convert the cells into neurons.
(A) The hypothesis tested by Chen et al. is that the protein PTBP1 stops astrocytes (pale pink) from becoming neurons (grey). (B) Adeno-associated viruses (green) can deliver the genetic information necessary to deactivate PTBP1 in astrocytes which have been genetically tagged (red). This potentially allows the cells to be converted into dopaminergic neurons which still carry the tag (red) reflecting that they have originated from astrocytes, as well as the viral label (green). (C) Chen et al. used a mouse model in which astrocyte origin could be traced to investigate whether knocking down PTBP1 using adeno-associated viruses may lead to the cells becoming dopaminergic neurons (DA carrying the red tag); this turned out not to be the case (red cross). Instead, dopaminergic neurons carrying the viral signal (green-only cells) were identified, which did not originate from astrocytes. (D) Similar experiments were conducted in a mouse model of Parkinson’s disease. In this instance, a toxin was introduced to kill endogenous dopaminergic neurons and render resting astrocytes reactive; in this injury-triggered state, astrocytes exhibit features associated with stem cells. Deactivating PTBP1 in reactive astrocytes again failed to turn them into neurons, and the mice still exhibited motor deficits.
Chen W, Zheng Q, Huang Q, Ma S, Li M. Repressing PTBP1 fails to convert reactive astrocytes to dopaminergic neurons in a 6-hydroxydopamine mouse model of Parkinson’s disease. eLife. 2022;11:e75636. doi: 10.7554/eLife.75636.
-
DOI
-
PMC
-
PubMed
Götz M, Bocchi R. Neuronal replacement: Concepts, achievements, and call for caution. Current Opinion in Neurobiology. 2021;69:185–192. doi: 10.1016/j.conb.2021.03.014.
-
DOI
-
PMC
-
PubMed
Magnusson JP, Göritz C, Tatarishvili J, Dias DO, Smith EMK, Lindvall O, Kokaia Z, Frisén J. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science. 2014;346:237–241. doi: 10.1126/science.346.6206.237.
-
DOI
-
PubMed
Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell. 2007;27:435–448. doi: 10.1016/j.molcel.2007.07.015.
-
DOI
-
PMC
-
PubMed
Qian H, Kang X, Hu J, Zhang D, Liang Z, Meng F, Zhang X, Xue Y, Maimon R, Dowdy SF, Devaraj NK, Zhou Z, Mobley WC, Cleveland DW, Fu X-D. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature. 2020;582:550–556. doi: 10.1038/s41586-020-2388-4.
-
DOI
-
PMC
-
PubMed