Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2022 Jun 21;3(6):100666.
doi: 10.1016/j.xcrm.2022.100666.

When blockchain meets artificial intelligence: An application to cancer histopathology

Affiliations
Comment

When blockchain meets artificial intelligence: An application to cancer histopathology

Runyu Hong et al. Cell Rep Med. .

Abstract

A recent study by Saldanha et al. demonstrates that blockchain-based models outcompeted local models and performed similarly with merged models to predict molecular features from cancer histopathology images. The results reveal the capability of decentralized models in molecular diagnosis of cancer.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

Figures

Figure 1
Figure 1
Different model training strategies Conventional merged data training involves data sharing and aggregation (left). FL allows only the weights of the locally trained models to be shared to a centralized coordinator (middle). SL adopts decentralized blockchain-based communication during the training process that shares neither the data nor the models (right). Created with biorender.com.

Comment on

  • Swarm learning for decentralized artificial intelligence in cancer histopathology.
    Saldanha OL, Quirke P, West NP, James JA, Loughrey MB, Grabsch HI, Salto-Tellez M, Alwers E, Cifci D, Ghaffari Laleh N, Seibel T, Gray R, Hutchins GGA, Brenner H, van Treeck M, Yuan T, Brinker TJ, Chang-Claude J, Khader F, Schuppert A, Luedde T, Trautwein C, Muti HS, Foersch S, Hoffmeister M, Truhn D, Kather JN. Saldanha OL, et al. Nat Med. 2022 Jun;28(6):1232-1239. doi: 10.1038/s41591-022-01768-5. Epub 2022 Apr 25. Nat Med. 2022. PMID: 35469069 Free PMC article.

References

    1. Coudray N., Ocampo P.S., Sakellaropoulos T., Narula N., Snuderl M., Fenyö D., Moreira A.L., Razavian N., Tsirigos A. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 2018;24:1559–1567. doi: 10.1038/s41591-018-0177-5. - DOI - PMC - PubMed
    1. Hong R., Liu W., DeLair D., Razavian N., Fenyö D. Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models. Cell Reports Med. 2021;2:100400. doi: 10.1016/j.xcrm.2021.100400. - DOI - PMC - PubMed
    1. Hong R., Liu W., Fenyö D. Predicting and visualizing STK11 mutation in lung Adenocarcinoma histopathology slides using deep learning. BioMedInformatics. 2021;2:101–105. doi: 10.3390/biomedinformatics2010006. 2022. - DOI
    1. Kim R.H., Nomikou S., Coudray N., Jour G., Dawood Z., Hong R., Esteva E., Sakellaropoulos T., Donnelly D., Moran U., et al. Deep learning and pathomics analyses reveal cell nuclei as important features for mutation prediction of BRAF-mutated melanomas. J. Invest. Dermatol. 2021;142:1650–1658.e6. - PMC - PubMed
    1. Fu Y., Jung A.W., Torne R.V., Gonzalez S., Vöhringer H., Shmatko A., Yates L.R., Jimenez-Linan M., Moore L., Gerstung M. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer. 2020;1:800–810. doi: 10.1038/s43018-020-0085-8. - DOI - PubMed