When blockchain meets artificial intelligence: An application to cancer histopathology
- PMID: 35732149
- PMCID: PMC9245033
- DOI: 10.1016/j.xcrm.2022.100666
When blockchain meets artificial intelligence: An application to cancer histopathology
Abstract
A recent study by Saldanha et al. demonstrates that blockchain-based models outcompeted local models and performed similarly with merged models to predict molecular features from cancer histopathology images. The results reveal the capability of decentralized models in molecular diagnosis of cancer.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
Figures

Comment on
-
Swarm learning for decentralized artificial intelligence in cancer histopathology.Nat Med. 2022 Jun;28(6):1232-1239. doi: 10.1038/s41591-022-01768-5. Epub 2022 Apr 25. Nat Med. 2022. PMID: 35469069 Free PMC article.
References
-
- Coudray N., Ocampo P.S., Sakellaropoulos T., Narula N., Snuderl M., Fenyö D., Moreira A.L., Razavian N., Tsirigos A. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 2018;24:1559–1567. doi: 10.1038/s41591-018-0177-5. - DOI - PMC - PubMed
-
- Hong R., Liu W., Fenyö D. Predicting and visualizing STK11 mutation in lung Adenocarcinoma histopathology slides using deep learning. BioMedInformatics. 2021;2:101–105. doi: 10.3390/biomedinformatics2010006. 2022. - DOI
-
- Kim R.H., Nomikou S., Coudray N., Jour G., Dawood Z., Hong R., Esteva E., Sakellaropoulos T., Donnelly D., Moran U., et al. Deep learning and pathomics analyses reveal cell nuclei as important features for mutation prediction of BRAF-mutated melanomas. J. Invest. Dermatol. 2021;142:1650–1658.e6. - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical