pH Distribution along Growing Fungal Hyphae at Microscale
- PMID: 35736082
- PMCID: PMC9224906
- DOI: 10.3390/jof8060599
pH Distribution along Growing Fungal Hyphae at Microscale
Abstract
Creating unique microenvironments, hyphal surfaces and their surroundings allow for spatially distinct microbial interactions and functions at the microscale. Using a microfluidic system and pH-sensitive whole-cell bioreporters (Synechocystis sp. PCC6803) attached to hyphae, we spatially resolved the pH along surfaces of growing hyphae of the basidiomycete Coprinopsis cinerea. Time-lapse microscopy analysis of ratiometric fluorescence signals of >2400 individual bioreporters revealed an overall pH drop from 6.3 ± 0.4 (n = 2441) to 5.0 ± 0.3 (n = 2497) within 7 h after pH bioreporter loading to hyphal surfaces. The pH along hyphal surfaces varied significantly (p < 0.05), with pH at hyphal tips being on average ~0.8 pH units lower than at more mature hyphal parts near the entrance of the microfluidic observation chamber. Our data represent the first dynamic in vitro analysis of surface pH along growing hyphae at the micrometre scale. Such knowledge may improve our understanding of spatial, pH-dependent hyphal processes, such as the degradation of organic matter or mineral weathering.
Keywords: Coprinopsis cinerea; bioreporter; hyphosphere; microfluidics; mycosphere; single cell.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
-
Illuminate the hidden: in vivo mapping of microscale pH in the mycosphere using a novel whole-cell biosensor.ISME Commun. 2021 Dec 11;1(1):75. doi: 10.1038/s43705-021-00075-3. ISME Commun. 2021. PMID: 36765263 Free PMC article.
-
Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization.Glob Chang Biol. 2022 Apr;28(8):2527-2540. doi: 10.1111/gcb.16073. Epub 2022 Jan 17. Glob Chang Biol. 2022. PMID: 34989058
-
Bidirectional Propagation of Signals and Nutrients in Fungal Networks via Specialized Hyphae.Curr Biol. 2019 Jan 21;29(2):217-228.e4. doi: 10.1016/j.cub.2018.11.058. Epub 2019 Jan 3. Curr Biol. 2019. PMID: 30612903
-
Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra.Trends Plant Sci. 2022 Apr;27(4):402-411. doi: 10.1016/j.tplants.2021.10.008. Epub 2021 Nov 13. Trends Plant Sci. 2022. PMID: 34782247 Review.
-
Hyphal development in Candida albicans from different cell states.Curr Genet. 2018 Dec;64(6):1239-1243. doi: 10.1007/s00294-018-0845-5. Epub 2018 May 23. Curr Genet. 2018. PMID: 29796903 Review.
Cited by
-
Hierarchical Structure of the Program Used by Filamentous Fungi to Navigate in Confining Microenvironments.Biomimetics (Basel). 2025 May 2;10(5):287. doi: 10.3390/biomimetics10050287. Biomimetics (Basel). 2025. PMID: 40422117 Free PMC article.
-
Unlocking the distinctive enzymatic functions of the early plant biomass deconstructive genes in a brown rot fungus by cell-free protein expression.Appl Environ Microbiol. 2024 May 21;90(5):e0012224. doi: 10.1128/aem.00122-24. Epub 2024 Apr 3. Appl Environ Microbiol. 2024. PMID: 38567954 Free PMC article.
-
AlphaFold modeling uncovers global structural features of class I and class II fungal hydrophobins.Protein Sci. 2025 Sep;34(9):e70279. doi: 10.1002/pro.70279. Protein Sci. 2025. PMID: 40852847 Free PMC article.
References
-
- Worrich A., Wick L.Y., Banitz T. Ecology of contaminant biotransformation in the mycosphere: Role of transport processes. Adv. Appl. Microbiol. 2018;104:93–133. - PubMed
-
- Liers C., Aranda E., Strittmatter E., Piontek K., Plattner D.A., Zorn H., Ullrich R., Hofrichter M. Phenol oxidation by DyP-type peroxidases in comparison to fungal and plant peroxidases. J. Mol. Catal. B Enzym. 2014;103:41–46. doi: 10.1016/j.molcatb.2013.09.025. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources