Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jun 17;11(12):3485.
doi: 10.3390/jcm11123485.

Application Progress of High-Throughput Sequencing in Ocular Diseases

Affiliations
Review

Application Progress of High-Throughput Sequencing in Ocular Diseases

Xuejun He et al. J Clin Med. .

Abstract

Ocular diseases affect multiple eye parts and can be caused by pathogenic infections, complications of systemic diseases, genetics, environment, and old age. Understanding the etiology and pathogenesis of eye diseases and improving their diagnosis and treatment are critical for preventing any adverse consequences of these diseases. Recently, the advancement of high-throughput sequencing (HTS) technology has paved wide prospects for identifying the pathogenesis, signaling pathways, and biomarkers involved in eye diseases. Due to the advantages of HTS in nucleic acid sequence recognition, HTS has not only identified several normal ocular surface microorganisms but has also discovered many pathogenic bacteria, fungi, parasites, and viruses associated with eye diseases, including rare pathogens that were previously difficult to identify. At present, HTS can directly sequence RNA, which will promote research on the occurrence, development, and underlying mechanism of eye diseases. Although HTS has certain limitations, including low effectiveness, contamination, and high cost, it is still superior to traditional diagnostic methods for its efficient and comprehensive diagnosis of ocular diseases. This review summarizes the progress of the application of HTS in ocular diseases, intending to explore the pathogenesis of eye diseases and improve their diagnosis.

Keywords: biomarkers; high-throughput sequencing; microRNA; next-generation sequencing; ocular disease.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Similar articles

Cited by

  • MBPD: A multiple bacterial pathogen detection pipeline for One Health practices.
    Yang X, Jiang G, Zhang Y, Wang N, Zhang Y, Wang X, Zhao FJ, Xu Y, Shen Q, Wei Z. Yang X, et al. Imeta. 2023 Jan 31;2(1):e82. doi: 10.1002/imt2.82. eCollection 2023 Feb. Imeta. 2023. PMID: 38868336 Free PMC article.
  • Emerging contaminants: A One Health perspective.
    Wang F, Xiang L, Sze-Yin Leung K, Elsner M, Zhang Y, Guo Y, Pan B, Sun H, An T, Ying G, Brooks BW, Hou D, Helbling DE, Sun J, Qiu H, Vogel TM, Zhang W, Gao Y, Simpson MJ, Luo Y, Chang SX, Su G, Wong BM, Fu TM, Zhu D, Jobst KJ, Ge C, Coulon F, Harindintwali JD, Zeng X, Wang H, Fu Y, Wei Z, Lohmann R, Chen C, Song Y, Sanchez-Cid C, Wang Y, El-Naggar A, Yao Y, Huang Y, Cheuk-Fung Law J, Gu C, Shen H, Gao Y, Qin C, Li H, Zhang T, Corcoll N, Liu M, Alessi DS, Li H, Brandt KK, Pico Y, Gu C, Guo J, Su J, Corvini P, Ye M, Rocha-Santos T, He H, Yang Y, Tong M, Zhang W, Suanon F, Brahushi F, Wang Z, Hashsham SA, Virta M, Yuan Q, Jiang G, Tremblay LA, Bu Q, Wu J, Peijnenburg W, Topp E, Cao X, Jiang X, Zheng M, Zhang T, Luo Y, Zhu L, Li X, Barceló D, Chen J, Xing B, Amelung W, Cai Z, Naidu R, Shen Q, Pawliszyn J, Zhu YG, Schaeffer A, Rillig MC, Wu F, Yu G, Tiedje JM. Wang F, et al. Innovation (Camb). 2024 Mar 13;5(4):100612. doi: 10.1016/j.xinn.2024.100612. eCollection 2024 Jul 1. Innovation (Camb). 2024. PMID: 38756954 Free PMC article. Review.
  • Nanopore techniques as a potent tool in the diagnosis and treatment of endophthalmitis: a literature review.
    Li ZY, Xu KY, Jin W. Li ZY, et al. Int J Ophthalmol. 2022 Dec 18;15(12):2009-2016. doi: 10.18240/ijo.2022.12.17. eCollection 2022. Int J Ophthalmol. 2022. PMID: 36536978 Free PMC article. Review.

References

    1. Watson J.D., Crick F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171:737–738. doi: 10.1038/171737a0. - DOI - PubMed
    1. Holley R.W., Apgar J., Everett G.A., Madison J.T., Marquisee M., Merrill S.H., Penswick J.R., Zamir A. Structure of a Ribonucleic Acid. Science. 1965;147:1462–1465. doi: 10.1126/science.147.3664.1462. - DOI - PubMed
    1. Madison J.T., Holley R.W. The Presence of 5,6-Dihydrouridylic Acid in Yeast “Soluble” Ribonucleic Acid. Biochem. Biophys. Res. Commun. 1965;18:153–157. doi: 10.1016/0006-291X(65)90732-1. - DOI - PubMed
    1. Min Jou W., Haegeman G., Ysebaert M., Fiers W. Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature. 1972;237:82–88. - PubMed
    1. Sanger F., Coulson A.R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 1975;94:441–448. doi: 10.1016/0022-2836(75)90213-2. - DOI - PubMed

LinkOut - more resources