Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 14;14(12):2461.
doi: 10.3390/nu14122461.

Link between Omega 3 Fatty Acids Carried by Lipoproteins and Breast Cancer Severity

Affiliations

Link between Omega 3 Fatty Acids Carried by Lipoproteins and Breast Cancer Severity

Christine Bobin-Dubigeon et al. Nutrients. .

Abstract

According to the International Agency for Research on Cancer (IARC) more than 10% of cancers can be explained by inadequate diet and excess body weight. Breast cancer is the most common cancer affecting women. The goal of our study is to clarify the relationship between ω3 fatty acids (FA) carried by different lipoproteins and breast cancer (BC) severity, according to two approaches: through clinic-biological data and through in vitro breast cancer cell models. The clinical study has been performed in sera from a cohort of BC women (n = 140, ICO, France) whose tumors differed by their hormone receptors status (HR− for tumors negative for estrogen receptors and progesterone receptors, HR+ for tumors positive for either estrogen receptors or progesterone receptors) and the level of proliferation markers (Ki-67 ≤ 20% Prolif− and Ki-67 ≥ 30% Prolif+). Lipids and ω3FA have been quantified in whole serum and in apoB-containing lipoproteins (Non-HDL) or free of it (HDL). Differences between Prolif− and Prolif+ were compared by Wilcoxon test in each sub-group HR+ and HR−. Results are expressed as median [25th−75th percentile]. Plasma cholesterol, triglycerides, HDL-cholesterol and Non-HDL cholesterol did not differ between Prolif− and Prolif+ sub-groups of HR− and HR+ patients. Plasma EPA and DHA concentrations did not differ either. In the HR− group, the distribution of EPA and DHA between HDL and Non-HDL differed significantly, as assessed by a higher ratio between the FA concentration in Non-HDL and HDL in Prolif− vs. Prolif+ patients (0.20 [0.15−0.36] vs. 0.04 [0.02−0.08], p = 0.0001 for EPA and 0.08 [0.04−0.10] vs. 0.04 [0.01−0.07], p = 0.04 for DHA). In this HR− group, a significant increase in Non-HDL EPA concentration was also observed in Prolif− vs. Prolif+ (0.18 [0.13−0.40] vs. 0.05 [0.02−0.07], p = 0.001). A relative enrichment on Non-HDL in EPA and DHA was also observed in Prolif− patients vs. Prolif+ patients, as assessed by a higher molar ratio between FA and apoB (0.12 [0.09−0.18] vs. 0.02 [0.01−0.05], p < 0.0001 for EPA and 1.00 [0.73−1.69 vs. 0.52 [0.14−1.08], p = 0.04 for DHA). These data were partly confirmed by an in vitro approach of proliferation of isolated lipoproteins containing EPA and DHA on MDA-MB-231 (HR−) and MCF-7 (HR+) cell models. Indeed, among all the studied fractions, only the correlation between the EPA concentration of Non-HDL was confirmed in vitro, although with borderline statistical significance (p = 0.07), in MDA-MB-231 cells. Non-HDL DHA, in the same cells model was significantly correlated to proliferation (p = 0.04). This preliminary study suggests a protective effect on breast cancer proliferation of EPA and DHA carried by apo B-containing lipoproteins (Non-HDL), limited to HR− tumors.

Keywords: DHA; EPA; HR−; breast cancer; lipoproteins; omega 3 PUFA.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
In vitro proliferation assay with different concentrations of Non-HDL EPA (top) and Non-HDL DHA (bottom) fractions by MTT assay on MDA-MB-231 cells and on MCF-7 cells. Expressed as % for control. HDL: high-density lipoprotein; EPA: eicosapentaenoic; DHA: docosahexaenoic.
Figure 2
Figure 2
Schematic hypothesis of dual effects of EPA and DHA on HR− breast cancer tumor according to the lipoprotein carriers, green arrow suggesting protective effect compared to red arrow suggesting a pejorative effect. LDL: low-density lipoprotein; VLDL: very low density lipoprotein.

Similar articles

Cited by

References

    1. Global Burden of Disease Cancer Collaboration. Fitzmaurice C., Allen C., Barber R.M., Barregard L., Bhutta Z.A., Brenner H., Dicker D.J., Chimed-Orchir O., Dandona R., et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2017;3:524–548. doi: 10.1001/jamaoncol.2016.5688. - DOI - PMC - PubMed
    1. Cholewski M., Tomczykowa M., Tomczyk M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients. 2018;10:1662. doi: 10.3390/nu10111662. - DOI - PMC - PubMed
    1. Djuricic I., Calder P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients. 2021;13:2421. doi: 10.3390/nu13072421. - DOI - PMC - PubMed
    1. Agostoni C., Bresson J.L., Fairweather-Tait S. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) Scientific Opinion on Dietary Reference Values for Fats, Including Saturated Fatty Acids, Polyunsaturated Fatty Acids, Monounsaturated Fatty Acids, Trans Fatty Acids, and Cholesterol. EFSA J. 2010;8:1461. doi: 10.2903/j.efsa.2010.1461. - DOI
    1. Bhatt D.L., Steg P.G., Miller M., Brinton E.A., Jacobson T.A., Ketchum S.B., Ralph T., Doyle J., Juliano R.A., Jiao L., et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2018;380:11–22. doi: 10.1056/NEJMoa1812792. - DOI - PubMed