Accurate Mass Identification of an Interfering Water Adduct and Strategies in Development and Validation of an LC-MS/MS Method for Quantification of MPI8, a Potent SARS-CoV-2 Main Protease Inhibitor, in Rat Plasma in Pharmacokinetic Studies
- PMID: 35745595
- PMCID: PMC9228185
- DOI: 10.3390/ph15060676
Accurate Mass Identification of an Interfering Water Adduct and Strategies in Development and Validation of an LC-MS/MS Method for Quantification of MPI8, a Potent SARS-CoV-2 Main Protease Inhibitor, in Rat Plasma in Pharmacokinetic Studies
Abstract
MPI8, a peptidyl aldehyde, is a potent antiviral agent against coronavirus. Due to unique tri-peptide bonds and the formyl functional group, the bioassay of MPI8 in plasma was challenged by a strong interference from water MPI8. Using QTOF LC-MS/MS, we identified MPI8•H2O as the major interference form that co-existed with MPI8 in aqueous and biological media. To avoid the resolution of MPI8 and MPI8•H2O observed on reverse phase columns, we found that a Kinetex hydrophilic interaction liquid chromatography (HILIC) column provided co-elution of both MPI8 and MPI8•H2O with a good single chromatographic peak and column retention of MPI8 which is suitable for quantification. Thus, a sensitive, specific, and reproducible LC-MS/MS method for the quantification of MPI8 in rat plasma was developed and validated using a triple QUAD LC-MS/MS. The chromatographic separation was achieved on a Kinetex HILIC column with a flow rate of 0.4 mL/min under gradient elution. The calibration curves were linear (r2 > 0.99) over MPI8 concentrations from 0.5−500 ng/mL. The accuracy and precision are within acceptable guidance levels. The mean matrix effect and recovery were 139% and 73%, respectively. No significant degradation of MPI8 occurred under the experimental conditions. The method was successfully applied to a pharmacokinetic study of MPI8 after administration of MPI8 sulfonate in rats.
Keywords: LC-MS/MS; MPI8; MPI8•H2O adduct; SARS-CoV-2; method development and validation; pharmacokinetics.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Khandia R., Singhal S., Alqahtani T., Kamal M.A., Nahed A., Nainu F., Desingu P.A., Dhama K. Emergence of SARS-CoV-2 Omicron (B. 1.1. 529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic. Environ. Res. 2022;209:112816. doi: 10.1016/j.envres.2022.112816. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
