TREM-2 plays a protective role in cholestasis by acting as a negative regulator of inflammation
- PMID: 35750136
- DOI: 10.1016/j.jhep.2022.05.044
TREM-2 plays a protective role in cholestasis by acting as a negative regulator of inflammation
Abstract
Background & aims: Inflammation, particularly that mediated by bacterial components translocating from the gut to the liver and binding to toll-like receptors (TLRs), is central to cholestatic liver injury. The triggering receptor expressed on myeloid cells-2 (TREM-2) inhibits TLR-mediated signaling and exerts a protective role in hepatocellular injury and carcinogenesis. This study aims to evaluate the role of TREM-2 in cholestasis.
Methods: TREM-2 expression was analyzed in the livers of patients with primary biliary cholangitis (PBC) or primary sclerosing cholangitis (PSC), and in mouse models of cholestasis. Wild-type (WT) and Trem-2 deficient (Trem-2-/-) mice were subjected to experimental cholestasis and gut sterilization. Primary cultured Kupffer cells were incubated with lipopolysaccharide and/or ursodeoxycholic acid (UDCA) and inflammatory responses were analyzed.
Results: TREM-2 expression was upregulated in the livers of patients with PBC or PSC, and in murine models of cholestasis. Compared to WT, the response to bile duct ligation (BDL)-induced obstructive cholestasis or alpha-naphtylisothiocyanate (ANIT)-induced cholestasis was exacerbated in Trem-2-/- mice. This was characterized by enhanced necroptotic cell death, inflammatory responses and biliary expansion. Antibiotic treatment partially abrogated the effects observed in Trem-2-/- mice after BDL. Experimental overexpression of TREM-2 in the liver of WT mice downregulated ANIT-induced IL-33 expression and neutrophil recruitment. UDCA regulated Trem-1 and Trem-2 expression in primary cultured mouse Kupffer cells and dampened inflammatory gene transcription via a TREM-2-dependent mechanism.
Conclusions: TREM-2 acts as a negative regulator of inflammation during cholestasis, representing a novel potential therapeutic target.
Lay summary: Cholestasis (the reduction or cessation of bile flow) causes liver injury. This injury is exacerbated when gut-derived bacterial components interact with receptors (specifically Toll-like receptors or TLRs) on liver-resident immune cells, promoting inflammation. Herein, we show that the anti-inflammatory receptor TREM-2 dampens TLR-mediated signaling and hence protects against cholestasis-induced liver injury. Thus, TREM-2 could be a potential therapeutic target in cholestasis.
Keywords: TREM receptors; cholangiopathies; inflammation; innate immunity; liver resident macrophages; ursodeoxycholic acid.
Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Conflict of interest The authors declare no conflicts of interest that pertain to this work. Please refer to the accompanying ICMJE disclosure forms for further details.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources