Removal of emerging pollutants by a 3-step system: Hybrid digester, vertical flow constructed wetland and photodegradation post-treatments
- PMID: 35750172
- DOI: 10.1016/j.scitotenv.2022.156750
Removal of emerging pollutants by a 3-step system: Hybrid digester, vertical flow constructed wetland and photodegradation post-treatments
Abstract
The removal of emerging pollutants from municipal wastewater was studied for the first time using a three-step pilot-scale system: 1) hybrid digester (HD) as first step, 2) subsurface vertical flow constructed wetland (VF) as second step, and 3) photodegradation (PD) unit as third step or post-treatment. The HD and VF units were built and operated in series with effluent recirculation at pilot scale. For the PD post-treatment, three alternatives were studied at lab-scale, i) UVC irradiation at 254 nm (0.5 h exposure time), ii) UVA irradiation at 365 nm using a TiO2-based photocatalyst and iii) sunlight irradiation using a TiO2-based photocatalyst, the last two for 1 and 2 h. Alternative iii) was also tested at pilot-scale. Degradation of nine compounds was evaluated: acetaminophen (ACE), caffeine (CAF), carbamazepine (CBZ), ketoprofen (KET), ibuprofen (IBU), diclofenac (DCL), clofibric acid (ACB), bisphenol A (BPA), and sotalol (SOT). Overall, the HD-VF-UVC system completely removed (>99.5 %) ACE, CAF, KET, IBU, DCL and ACB, and to a lesser extent SOT (98 %), BPA (83 %) and CBZ (51 %). On the other hand, the HD-VF-UVA/TiO2 system (at 2 h) achieved >99.5 % removal of ACE, CAF, KET, IBU and DCL while ACB, BPA, CBZ and SOT were degraded by 83 %, 81 %, 78 % and 68 %, respectively. Working also at 2 h of exposure time, in summer conditions, the HD-VF-Sol/TiO2 system achieved >99.5 % removal of ACE, CAF, KET, IBU, DCL and ACB, and to a minor extent BPA (80 %), SOT (74 %) and CBZ (69 %). Similar results, although slightly lower for SOT (60 %) and CBZ (59 %), were obtained in the pilot sunlight plus TiO2 catalyst unit. However, the use of sunlight irradiation with a TiO2-based photocatalyst clearly showed lower removal efficiency in autumn conditions (i.e., 47 % SOT, 31 % CBZ).
Keywords: Advanced oxidation process; Constructed wetland; Emerging pollutant; Hybrid digester; Municipal wastewater.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous