Clinical relevance of the cagA and vacA s1m1 status and antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis
- PMID: 35752757
- PMCID: PMC9233856
- DOI: 10.1186/s12879-022-07546-5
Clinical relevance of the cagA and vacA s1m1 status and antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis
Abstract
Background: The role of Helicobacter pylori (H. pylori) virulence factors of such as vacA s1m1 and cagA in designating clinical outcomes and eradication rate has been deeply challenged in the last decade. The goal of this analysis was to identify the potential relevance between cagA and vacA genotypes with reported antibiotic resistance observed in clinical H. pylori isolates.
Methods: This literature search was conducted in databases such as Clarivate analytics, PubMed, Scopus, EMBASE, DOAJ, and Google Scholar by April 2022, regardless of language restrictions and publication date. Quality of the included studies was assessed by the Newcastle-Ottawa scale. Statistical analysis of retrieved studies was fulfilled using Comprehensive Meta-Analysis software version 2.2. Following quality appraisal of eligible studies, potential association between the status of cagA and vacA genes with resistance to clarithromycin, metronidazole, amoxicillin, tetracycline, and levofloxacin was measured using odds ratio with 95% confidence interval. We also used sensitivity analyses and meta-regression to eliminate the source of heterogeneity from the overall estimates. Publication bias was assessed using funnel plot, Egger's test, Begg's test with the trim and fill procedure to assess the presence and magnitude of publication bias in the included studies.
Results: Our findings suggested that a significant relationship between cagA status and increase resistance to metronidazole (OR: 2.69; 95% CI: 1.24-5.83). In subgroup analysis, we found that in the Western population, infection with cagA-positive strains could be led to increase in the resistance to metronidazole (OR: 1.59; 95% CI: 0.78-3.21), amoxicillin (OR: 19.68; 95% CI: 2.74-141.18), and levofloxacin (OR: 11.33; 95% CI: 1.39-91.85). After implementation of trim and fill method, the adjusted OR was not significantly differed from original estimates which in turn represented our subgroup analysis was statistically robust. On the other hand, vacA genotypes usually reduce the antibiotic resistance of this bacterium, so that vacA s1m1 significantly reduces the resistance to metronidazole (OR: 0.41; 95% CI: 0.20-0.86). Surprisingly, resistance of vacA s2m2 strains to antibiotics was low, the reason may be due to the non-inflammatory properties of strains containing vacA s2m2. The meta-regression and sensitivity analyses successfully reduced the effect of heterogeneity from the overall estimates. In addition, although the pooled OR is reduced after trim and fill adjustment but results do not change the conclusion regarding vacA genotypes and antibiotic resistance.
Conclusions: According to our findings, it was clearly demonstrated that cagA-positive strains are resistance to metronidazole, especially in Western countries. In Western countries, vacA s1m1 increases resistance to amoxicillin and levofloxacin. Based on the present findings, the vacA s1m1 genotype significantly increases resistance to metronidazole, while the vacA s1m2 decreases resistance to clarithromycin and metronidazole. Resistance to antibiotics in less virulent (vacA s2m2) strains is statistically significant lower than others.
Keywords: Antibiotic resistance; H. pylori; Treatment; cagA; vacA.
© 2022. The Author(s).
Conflict of interest statement
There is no any conflict of interest among the all authors.
Figures






Similar articles
-
Primary antibiotic resistance and its relationship with cagA and vacA genes in Helicobacter pylori isolates from Algerian patients.Braz J Microbiol. 2018 Jul-Sep;49(3):544-551. doi: 10.1016/j.bjm.2017.11.003. Epub 2018 Feb 13. Braz J Microbiol. 2018. PMID: 29452847 Free PMC article.
-
Relationship between antibiotic resistance and the cagA and vacA genotypes among Helicobacter pylori strain isolates from patients in Xi'an.Braz J Microbiol. 2023 Dec;54(4):2773-2780. doi: 10.1007/s42770-023-01133-9. Epub 2023 Oct 2. Braz J Microbiol. 2023. PMID: 37779175 Free PMC article.
-
Associations between biofilm formation and virulence factors among clinical Helicobacter pylori isolates.Microb Pathog. 2024 Nov;196:106977. doi: 10.1016/j.micpath.2024.106977. Epub 2024 Sep 23. Microb Pathog. 2024. PMID: 39321970
-
Primary antibiotic resistance of Helicobacter pylori in the Asia-Pacific region between 1990 and 2022: an updated systematic review and meta-analysis.Lancet Gastroenterol Hepatol. 2024 Jan;9(1):56-67. doi: 10.1016/S2468-1253(23)00281-9. Epub 2023 Nov 14. Lancet Gastroenterol Hepatol. 2024. PMID: 37972625
-
Antibiotic resistance of Helicobacter pylori in Australia and New Zealand: A systematic review and meta-analysis.J Gastroenterol Hepatol. 2021 Jun;36(6):1450-1456. doi: 10.1111/jgh.15352. Epub 2021 Jan 3. J Gastroenterol Hepatol. 2021. PMID: 33217029
Cited by
-
Infiltration to infection: key virulence players of Helicobacter pylori pathogenicity.Infection. 2024 Apr;52(2):345-384. doi: 10.1007/s15010-023-02159-9. Epub 2024 Jan 25. Infection. 2024. PMID: 38270780 Review.
-
BanXiaXieXin decoction treating gastritis mice with drug-resistant Helicobacter pylori and its mechanism.World J Gastroenterol. 2023 May 14;29(18):2818-2835. doi: 10.3748/wjg.v29.i18.2818. World J Gastroenterol. 2023. PMID: 37274067 Free PMC article.
-
Evolution of Helicobacter pylori Resistance to Antibiotics: A Topic of Increasing Concern.Antibiotics (Basel). 2023 Feb 4;12(2):332. doi: 10.3390/antibiotics12020332. Antibiotics (Basel). 2023. PMID: 36830243 Free PMC article. Review.
-
Exploring virulence factors of Helicobacter pylori isolated from gastric biopsy.Mol Biol Rep. 2024 Jan 25;51(1):192. doi: 10.1007/s11033-023-09075-z. Mol Biol Rep. 2024. PMID: 38270789
-
The Most Recent Insights into the Roots of Gastric Cancer.Life (Basel). 2024 Jan 8;14(1):95. doi: 10.3390/life14010095. Life (Basel). 2024. PMID: 38255710 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous