Spike-and-slab type variable selection in the Cox proportional hazards model for high-dimensional features
- PMID: 35755095
- PMCID: PMC9225314
- DOI: 10.1080/02664763.2021.1893285
Spike-and-slab type variable selection in the Cox proportional hazards model for high-dimensional features
Abstract
In this paper, we develop a variable selection framework with the spike-and-slab prior distribution via the hazard function of the Cox model. Specifically, we consider the transformation of the score and information functions for the partial likelihood function evaluated at the given data from the parameter space into the space generated by the logarithm of the hazard ratio. Thereby, we reduce the nonlinear complexity of the estimation equation for the Cox model and allow the utilization of a wider variety of stable variable selection methods. Then, we use a stochastic variable search Gibbs sampling approach via the spike-and-slab prior distribution to obtain the sparsity structure of the covariates associated with the survival outcome. Additionally, we conduct numerical simulations to evaluate the finite-sample performance of our proposed method. Finally, we apply this novel framework on lung adenocarcinoma data to find important genes associated with decreased survival in subjects with the disease.
Keywords: 62J05; 62N02; Bayesian modeling; Markov chain Monte Carlo; latent indicator; lung adenocarcinoma; score function; stochastic variable search.
© 2021 Informa UK Limited, trading as Taylor & Francis Group.
Conflict of interest statement
No potential conflict of interest was reported by the author(s).
Figures



Similar articles
-
SIGHR: Side information guided high-dimensional regression.Stat Methods Med Res. 2023 Nov;32(11):2270-2282. doi: 10.1177/09622802231206475. Epub 2023 Oct 12. Stat Methods Med Res. 2023. PMID: 37823384
-
The spike-and-slab quantile LASSO for robust variable selection in cancer genomics studies.Stat Med. 2024 Nov 20;43(26):4928-4983. doi: 10.1002/sim.10196. Epub 2024 Sep 11. Stat Med. 2024. PMID: 39260448
-
Bayesian Inference for High Dimensional Cox Models with Gaussian and Diffused-Gamma Priors: A Case Study of Mortality in COVID-19 Patients Admitted to the ICU.Stat Biosci. 2024 Apr;16(1):221-249. doi: 10.1007/s12561-023-09395-5. Epub 2023 Nov 4. Stat Biosci. 2024. PMID: 38651050 Free PMC article.
-
Review of Bayesian selection methods for categorical predictors using JAGS.J Appl Stat. 2021 Mar 21;49(9):2370-2388. doi: 10.1080/02664763.2021.1902955. eCollection 2022. J Appl Stat. 2021. PMID: 35755084 Free PMC article. Review.
-
Robust variable selection methods with Cox model-a selective practical benchmark study.Brief Bioinform. 2024 Sep 23;25(6):bbae508. doi: 10.1093/bib/bbae508. Brief Bioinform. 2024. PMID: 39400113 Free PMC article. Review.
References
-
- Beer D.G., Kardia S.L., Huang C.C., Giordano T.J., Levin A.M., Misek D.E., Lin L., Chen G., Gharib T.G., Thomas D.G., Lizyness M.L., Kuick R., Hayasaka S., Taylor J.M., Iannettoni M.D., Orringer M.B., and Hanash S., Gene-expression profiles predict survival of patients with lung adenocarcinoma, Nat. Med. 8 (2002), pp. 816–824. - PubMed
-
- Cox D.R., Regressioin models and life-tables, J. R. Stat. Soc. Ser. B (Methodol.) 34 (1972), pp. 187–220.
LinkOut - more resources
Full Text Sources
Other Literature Sources