Orbital analysis of bonding in diarylhalonium salts and relevance to periodic trends in structure and reactivity
- PMID: 35756513
- PMCID: PMC9172531
- DOI: 10.1039/d2sc02332f
Orbital analysis of bonding in diarylhalonium salts and relevance to periodic trends in structure and reactivity
Abstract
Diarylhalonium compounds provide new opportunities as reagents and catalysts in the field of organic synthesis. The three center, four electron (3c-4e) bond is a center piece of their reactivity, but structural variation among the diarylhaloniums, and in comparison with other λ3-iodanes, indicates that the model needs refinement for broader applicability. We use a combination of Density Functional Theory (DFT), Natural Bond Orbital (NBO) Theory, and X-ray structure data to correlate bonding and structure for a λ3-iodane and a series of diarylchloronium, bromonium, and iodonium salts, and their isoelectronic diarylchalcogen counterparts. This analysis reveals that the s-orbital on the central halogen atom plays a greater role in the 3c-4e bond than previously considered. Finally, we show that our revised bonding model and associated structures account for both kinetic and thermodynamic reactivity for both acyclic phenyl(mesityl)halonium and cyclic dibenzohalolium salts.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures







References
-
- Kuriyama M. Hanazawa N. Abe Y. Katagiri K. Ono S. Yamamoto K. Onomura O. Chem. Sci. 2020;11:8295. doi: 10.1039/D0SC02516J. - DOI - PMC - PubMed
- Yoshida Y. Ishikawa S. Mino T. Sakamoto M. Chem. Commun. 2021;57:2519. doi: 10.1039/D0CC07733J. - DOI - PubMed
- Lanzi M. Dherbassy Q. Wencel-Delord J. Angew. Chem., Int. Ed. 2021;60:14852. doi: 10.1002/anie.202103625. - DOI - PubMed
- Yoshida Y. Mino T. Sakamoto M. ACS Catal. 2021;11:13028. doi: 10.1021/acscatal.1c04070. - DOI
- Lanzi M. Abdine R. A. A. De Abreu M. Wencel-Delord J. Org. Lett. 2021;23:9047. doi: 10.1021/acs.orglett.1c03278. - DOI - PubMed
- Nakajima M. Miyamoto K. Hirano K. Uchiyama M. J. Am. Chem. Soc. 2019;141:6499. doi: 10.1021/jacs.9b02436. - DOI - PubMed
- Miyamoto K. Uchiyama M. Chem. Lett. 2021;50:832. doi: 10.1246/cl.200849. - DOI
-
- Ochiai M., in Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis, ed. T. Wirth, Springer, New York, 2003, pp. 5–68
- Merritt E. A. Olofsson B. Angew. Chem., Int. Ed. 2009;48:9052. doi: 10.1002/anie.200904689. - DOI - PubMed
- Zhdankin V. V., Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, John Wiley & Sons, United Kingdom, 2014
- Olofsson B., Hypervalent Iodine Chemistry, in Topics in Current Chemistry, ed. T. Wirth, Springer, Cham, 2015, vol. 373, pp. 135–166
-
- Nesmeyanov A. N. Khotsyanova T. L. Saatsazov V. V. Tolstaya T. P. Isaeva L. S. Dokl. Akad. Nauk SSSR. 1974;218:140.
- Ochiai M. Synlett. 2009:159.
-
- Feng B. Wan D. Yan L. Kadam V. D. You J. Gao G. RSC Adv. 2016;6:66407. doi: 10.1039/C6RA15464F. - DOI
LinkOut - more resources
Full Text Sources