Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 19;13(22):6532-6540.
doi: 10.1039/d2sc02332f. eCollection 2022 Jun 7.

Orbital analysis of bonding in diarylhalonium salts and relevance to periodic trends in structure and reactivity

Affiliations

Orbital analysis of bonding in diarylhalonium salts and relevance to periodic trends in structure and reactivity

Shubhendu S Karandikar et al. Chem Sci. .

Abstract

Diarylhalonium compounds provide new opportunities as reagents and catalysts in the field of organic synthesis. The three center, four electron (3c-4e) bond is a center piece of their reactivity, but structural variation among the diarylhaloniums, and in comparison with other λ3-iodanes, indicates that the model needs refinement for broader applicability. We use a combination of Density Functional Theory (DFT), Natural Bond Orbital (NBO) Theory, and X-ray structure data to correlate bonding and structure for a λ3-iodane and a series of diarylchloronium, bromonium, and iodonium salts, and their isoelectronic diarylchalcogen counterparts. This analysis reveals that the s-orbital on the central halogen atom plays a greater role in the 3c-4e bond than previously considered. Finally, we show that our revised bonding model and associated structures account for both kinetic and thermodynamic reactivity for both acyclic phenyl(mesityl)halonium and cyclic dibenzohalolium salts.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Structure of diarylhalonium salts and bonding models.
Scheme 1
Scheme 1. Synthesis and structures of 16–18.
Fig. 2
Fig. 2. Correlation of s-orbital character in bonding and bond angle.
Fig. 3
Fig. 3. Impact of counter anion on structure and bonding in diphenylhalonium salts.
Scheme 2
Scheme 2. Mesitylation of pyridine. (a) Full reaction profile with for the reaction of 18 with pyridine. (b) Initial rates of reaction for 17 and 18 with pyridine.
Scheme 3
Scheme 3. Relationship between s-orbital character and leaving group ability of PhX.
Fig. 4
Fig. 4. Comparison of Lewis acidity of acyclic and cyclic halonium cations.

References

    1. Kuriyama M. Hanazawa N. Abe Y. Katagiri K. Ono S. Yamamoto K. Onomura O. Chem. Sci. 2020;11:8295. doi: 10.1039/D0SC02516J. - DOI - PMC - PubMed
    2. Yoshida Y. Ishikawa S. Mino T. Sakamoto M. Chem. Commun. 2021;57:2519. doi: 10.1039/D0CC07733J. - DOI - PubMed
    3. Lanzi M. Dherbassy Q. Wencel-Delord J. Angew. Chem., Int. Ed. 2021;60:14852. doi: 10.1002/anie.202103625. - DOI - PubMed
    4. Yoshida Y. Mino T. Sakamoto M. ACS Catal. 2021;11:13028. doi: 10.1021/acscatal.1c04070. - DOI
    5. Lanzi M. Abdine R. A. A. De Abreu M. Wencel-Delord J. Org. Lett. 2021;23:9047. doi: 10.1021/acs.orglett.1c03278. - DOI - PubMed
    6. Nakajima M. Miyamoto K. Hirano K. Uchiyama M. J. Am. Chem. Soc. 2019;141:6499. doi: 10.1021/jacs.9b02436. - DOI - PubMed
    7. Miyamoto K. Uchiyama M. Chem. Lett. 2021;50:832. doi: 10.1246/cl.200849. - DOI
    1. Ochiai M., in Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis, ed. T. Wirth, Springer, New York, 2003, pp. 5–68
    2. Merritt E. A. Olofsson B. Angew. Chem., Int. Ed. 2009;48:9052. doi: 10.1002/anie.200904689. - DOI - PubMed
    3. Zhdankin V. V., Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, John Wiley & Sons, United Kingdom, 2014
    4. Olofsson B., Hypervalent Iodine Chemistry, in Topics in Current Chemistry, ed. T. Wirth, Springer, Cham, 2015, vol. 373, pp. 135–166
    1. Nesmeyanov A. N. Khotsyanova T. L. Saatsazov V. V. Tolstaya T. P. Isaeva L. S. Dokl. Akad. Nauk SSSR. 1974;218:140.
    2. Ochiai M. Synlett. 2009:159.
    1. Feng B. Wan D. Yan L. Kadam V. D. You J. Gao G. RSC Adv. 2016;6:66407. doi: 10.1039/C6RA15464F. - DOI
    1. Rundle R. E. J. Am. Chem. Soc. 1947;69:1327. doi: 10.1021/ja01198a028. - DOI - PubMed
    2. Pimentel G. C. J. Chem. Phys. 1951;19:446. doi: 10.1063/1.1748245. - DOI
    3. Rundle R. E. J. Am. Chem. Soc. 1964;85:112. doi: 10.1021/ja00884a026. - DOI

LinkOut - more resources