Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 4;21(1):e123820.
doi: 10.5812/ijpr.123820. eCollection 2022 Dec.

Piperine Increases Pentagamavunon-1 Anti-cancer Activity on 4T1 Breast Cancer Through Mitotic Catastrophe Mechanism and Senescence with Sharing Targeting on Mitotic Regulatory Proteins

Affiliations

Piperine Increases Pentagamavunon-1 Anti-cancer Activity on 4T1 Breast Cancer Through Mitotic Catastrophe Mechanism and Senescence with Sharing Targeting on Mitotic Regulatory Proteins

Endah Endah et al. Iran J Pharm Res. .

Abstract

Pentagamavunon-1 performs more potent anti-cancer effects than curcumin against various cancer cells, but it remains to be optimized. Piperine shows the activity as an enhancer of a therapeutic agent. This study expects to achieve higher effectiveness of PGV-1 on 4T1 breast cancer cells through co-treatment with piperine with exploring the effect of cytotoxicity, mitotic catastrophe, cellular senescence, and target proteins of PGV-1 and piperine on the regulation of mitosis in TNBC cells (4T1). The assays emphasize MTT assay, May Grünwald-Giemsa staining, SA-β-galactosidase assay, and bioinformatics analysis, respectively, to elicit the respected activities. The results revealed that PGV-1 performed a cytotoxic effect with an IC50 value of 9 µM while piperine showed a lower cytotoxic effect with an IC50 value of 800 µM on 4T1 cells 24 h treatment. However, the combination treatment of both showed a synergistic cytotoxic enhancement effect with an average CI value < 1. Furthermore, the combination of PGV-1 and piperine induced mitotic catastrophe and senescence better than the single treatment. Treatment of 1 µM of PGV-1 and 400 µM of piperine increased the percentage of senescent cells by 33%. Bioinformatics analysis revealed that PGV-1 and piperine target proteins play a role in mitotic regulation, namely CDK1, KIF11, AURKA, AURKB, and PLK1, to contribute to mitotic catastrophe. Therefore, piperine increases the effectiveness of PGV-1 to suppress 4T1 cells growth synergistically that may occur through mitotic catastrophe and senescence targeting on mitotic regulatory proteins.

Keywords: 4T1 Cells; Mitotic Catastrophe; Pentagamavunon-1 (PGV-1); Piperine; Protein Target; Senescence; TNBC.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interests: We claimed that we do not have any competing interests.

Figures

Figure 1.
Figure 1.. Cytotoxic effect of PGV-1 and piperine on 4T1 cells. 4T1 cells (7 × 103 cells/well) were cultured in a 96 well-plate and treated with PGV-1 and piperine for 24 h. A and B, The cytotoxicity of piperine and PGV-1 was expressed as percent cell viability (mean ± SD of 3 trials); C, The combination treatment showed lowering cell viability compared to a single treatment of each compound with IC50 of piperine (100, 200, 400 µM) combined with PGV-1 (1, 2, and 5 µM) for 24 h; D, Combination Index of PGV-1 and piperine.
Figure 2.
Figure 2.. Mitotic catastrophe induction effect of PGV-1 and piperine on 4T1 cells. 4T1 cells (2 × 105 cells/ well) were grown in a 6 well-plate and treated with PGV-1 and piperine for 24 hours. Mitotic catastrophe cells were analyzed using the May Grünwald-Giemsa staining assay under an inverted microscope. A, The morphology of cells of the several treatments is indicated. The red arrows indicate the polynucleated cells/mitotic catastrophe. B, The percentage of mitotic catastrophe cells from microscopic observation. Data are expressed as mean ± SD of three independent experiments (*** P < 0.001).
Figure 3.
Figure 3.. Induction effect of PGV-1 and piperine senescence cells on 4T1 cells. 4T1 cells (2 × 105 cells/ well) were seeded in a 6-well plate and treated with PGV-1 and piperine for 24 hours then observed after 72 hours. Senescent cells were analyzed using the SA-β-galactosidase staining assay under an inverted microscope. A, Morphological appearance of the cells in the several treatments as indicated. The red arrows indicate the senescent cells. B, The percentage of senescent cells from microscopic observation. Data are expressed as mean ± SD from triplicate independent trials (* P < 0.05, ** P < 0.01).
Figure 4.
Figure 4.. Predictive target proteins of PGV-1 and piperine in TNBC. 250 proteins overexpressed in TNBC were obtained from UALCAN, while 100 target proteins of PGV-1 and piperine were respectively obtained from SwissTargetPrediction. A, Protein slice between the overexpressed protein in TNBC and the predictive target protein PGV-1; B, Protein slice between the overexpressed protein in TNBC and the predictive target protein piperine. Venn diagram analysis using InteractiVenn.
Figure 5.
Figure 5.. Expression of PGV-1 and piperine target proteins on BRCA and their correlation with Survival of BRCA patients. Data of target gene expression based on the breast cancer subclass were obtained from UALCAN (number of samples: normal = 114, luminal = 566, HER2-pos = 87, and TNBC = 116), while the data of the effect of target gene expression level on BRCA patient survival were obtained from OncoLnc (number of samples: low expression = 251 and high expression = 251) (*** P < 0.001).
Figure 6.
Figure 6.. The binding interaction model of PGV-1 toward some protein target-related TNBC. A, PGV-1 and the native ligands bind to the binding site of the target protein; B, Docking score of PGV-1 and the native ligands toward some protein target-related TNBC.
Figure 7.
Figure 7.. The binding interaction model of piperine toward some protein target-related TNBC. A, Piperine and the native ligands bind to the binding site of the target protein; B, Docking score of piperine and the native ligands toward some protein target-related TNBC.
Figure 8.
Figure 8.. The possible mechanism of the mitotic catastrophe effect of the combinatorial treatment of PGV-1 and piperine on TNBC cells.

Similar articles

Cited by

References

    1. Da'i M, Suhendi A, Meiyanto E, Jenie UA, Kawaichi M. Apoptosis Induction Effect of Curcumin and Its Analogs Pentagamavunon-0 and Pentagamavunon-1 on Cancer Cell Lines. Asian J Pharm Clin Res. 2017;10(3):373. doi: 10.22159/ajpcr.2017.v10i3.16311. - DOI
    1. Meiyanto E, Putri H, Arum Larasati Y, Yudi Utomo R, Istighfari Jenie R, Ikawati M, et al. Anti-proliferative and Anti-metastatic Potential of Curcumin Analogue, Pentagamavunon-1 (PGV-1), Toward Highly Metastatic Breast Cancer Cells in Correlation with ROS Generation. Adv Pharm Bull. 2019;9(3):445–52. doi: 10.15171/apb.2019.053. - DOI - PMC - PubMed
    1. Lestari B, Nakamae I, Yoneda-Kato N, Morimoto T, Kanaya S, Yokoyama T, et al. Pentagamavunon-1 (PGV-1) inhibits ROS metabolic enzymes and suppresses tumor cell growth by inducing M phase (prometaphase) arrest and cell senescence. Sci Rep. 2019;9(1):14867. doi: 10.1038/s41598-019-51244-3. - DOI - PMC - PubMed
    1. Meiyanto E, Husnaa U, Kastian RF, Putri H, Larasati YA, Khumaira A, et al. The Target Differences of Anti-Tumorigenesis Potential of Curcumin and its Analogues Against HER-2 Positive and Triple-Negative Breast Cancer Cells. Adv Pharm Bull. 2021;11(1):188–96. doi: 10.34172/apb.2021.020. - DOI - PMC - PubMed
    1. Wadhwa S, Singhal S, Rawal S. Bioavailability enhancement by piperine: A review. Asian J Biomed Pharm Sci. 2014;4(36):1.

LinkOut - more resources