Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 30;12(1):84.
doi: 10.1186/s13568-022-01426-6.

Novel silver metformin nano-structure to impede virulence of Staphylococcus aureus

Affiliations

Novel silver metformin nano-structure to impede virulence of Staphylococcus aureus

Hisham A Abbas et al. AMB Express. .

Abstract

Staphylococcus aureus is a prevalent etiological agent of health care associated and community acquired infections. Antibiotic abuse resulted in developing multidrug resistance in S. aureus that complicates treatment of infections. Targeting bacterial virulence using FDA approved medication offers an alternative to the antibiotics with no stress on bacterial viability. Using nanomaterials as anti-virulence agent against S. aureus virulence factors is a valuable approach. This study aims to investigate the impact of metformin (MET), metformin nano (MET-Nano), silver metformin nano structure (Ag-MET-Ns) and silver nanoparticles (AgNPs) on S. aureus virulence and pathogenicity. The in vitro results showed a higher inhibitory activity against S. aureus virulence factors with both MET-Nano and Ag-MET-Ns treatment. However, genotypically, it was found that except for agrA and icaR genes that are upregulated, the tested agents significantly downregulated the expression of crtM, sigB, sarA and fnbA genes, with Ag-MET-Ns being the most efficient one. MET-Nano exhibited the highest protection against S. aureus infection in mice. These data indicate the promising anti-virulence activity of nanoformulations especially Ag-MET-Ns against multidrug resistant S. aureus by inhibiting quorum sensing signaling system.

Keywords: Multidrug resistant S. aureus; Quorum sensing inhibition; Silver metformin nanostructure; Virulence.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing of interest.

Figures

Fig. 1
Fig. 1
A Size distribution of Ag-MET-Ns at 66 nm, B Zeta potential of Ag-MET-Ns, C FT-IR of Metformin, MET-Nano, AgNPs and Ag-MET-Ns, D TEM image of Ag-MET-Ns and E image of Ag-MET-Ns stabilized form
Fig. 2
Fig. 2
Inhibition of biofilm formation in S. aureus by 1/10 MICs of the tested agents. Optical density was measured at 570 nm. Significant reduction of biofilm formation was found with 1/10 MICs of the tested inhibitors in the tested bacteria compared to controls. The data shown represent the means ± standard errors. *P < 0.05, ns; non-significant
Fig. 3
Fig. 3
Inhibition of Staphyloxanthin pigment production by 1/10 MICs of the tested agents. The pigment was extracted with methanol from treated and untreated bacterial cells and the yellow pigment was measured at OD 450 nm. The data shown represent the means ± standard errors. *; significant P < 0.05, ns; non-significant
Fig. 4
Fig. 4
Downregulation of S. aureus QS genes by tested agents. A crtM, B sigB, C agrA, D sarA, E icaR and F fnbA using sub-MICs of the tested agents compared to controls. The data shown are the means ± standard errors of three biological experiments with three technical replicates each. *P < 0.05, ns; non-significant
Fig. 5
Fig. 5
Bacterial load reduction by tested agents. S. aureus ATCC 6538 CFUs recovered from livers (A) and kidneys (B) of mice tissues 24 h post-infection. Bars represent mean log CFUs/g of organ tissue. The bacterial load was calculated and expressed as means ± standard errors. *P < 0.05

Similar articles

Cited by

References

    1. Abbas HA, Elsherbini AM, Shaldam MA. Repurposing metformin as a quorum sensing inhibitor in Pseudomonas aeruginosa. Afr Health Sci. 2017;17(3):808–819. doi: 10.4314/ahs.v17i3.24. - DOI - PMC - PubMed
    1. Abbas HA, Elsherbini AM, Shaldam MA. Glyceryl trinitrate blocks staphyloxanthin and biofilm formation in Staphylococcus aureus. Afr Health Sci. 2019;19(1):1376–1384. doi: 10.4314/ahs.v19i1.10. - DOI - PMC - PubMed
    1. Abdallah W, Abakar M. Effect of chlorhexidine and sodium hypochlorite on Staphylococcus aureus biofilm. J Prev Infect Control. 2017;3(2):1–6. doi: 10.21767/2471-9668.100035. - DOI
    1. Agarwal AA, Jadhav PR, Deshmukh YA. Prescribing pattern and efficacy of anti-diabetic drugs in maintaining optimal glycemic levels in diabetic patients. J Basic Clin Pharm. 2014;5(3):79–83. doi: 10.4103/0976-0105.139731. - DOI - PMC - PubMed
    1. Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J. Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS ONE. 2015;10(7):e0131178. doi: 10.1371/journal.pone.0131178. - DOI - PMC - PubMed

LinkOut - more resources