Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug:287:121644.
doi: 10.1016/j.biomaterials.2022.121644. Epub 2022 Jun 21.

Dissolving microneedles for long-term storage and transdermal delivery of extracellular vesicles

Affiliations

Dissolving microneedles for long-term storage and transdermal delivery of extracellular vesicles

Van Dat Bui et al. Biomaterials. 2022 Aug.

Abstract

Extracellular vesicles (EVs) have shown great potential in disease diagnosis and treatment; however, their clinical applications remain challenging due to their unsatisfactory long-term stability and the lack of effective delivery strategies. In this study, we prepared human adipose stem cell-derived EV (hASC-EV)-loaded hyaluronic acid dissolving microneedles (EV@MN) to investigate the feasibility of EVs for their clinical applications. The biological activities of the EVs in this formulation were maintained for more than six months under mild storage conditions, especially at temperatures lower than 4 °C. Moreover, the EV@MN enabled precise and convenient intradermal delivery for sustained release of EVs in the dermis layer. Therefore, EV@MN significantly improved the biological functions of hASC-EVs on dermal fibroblasts by promoting syntheses of proteins for the extracellular matrix such as collagen and elastin, enhancing fibroblast proliferation, and regulating the phenotype of fibroblast, compared with other administration methods. This research revealed a possible and feasible formulation for the clinical application of EVs.

Keywords: Extracellular vesicle; Fibroblast; Long-term storage; Microneedle; Transdermal delivery.

PubMed Disclaimer

LinkOut - more resources