Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 29:295:281-284.
doi: 10.3233/SHTI220717.

Automatic Wound Type Classification with Convolutional Neural Networks

Affiliations

Automatic Wound Type Classification with Convolutional Neural Networks

Leila Malihi et al. Stud Health Technol Inform. .

Abstract

Chronic wounds are ulcerations of the skin that fail to heal because of an underlying condition such as diabetes mellitus or venous insufficiency. The timely identification of this condition is crucial for healing. However, this identification requires expert knowledge unavailable in some care situations. Here, artificial intelligence technology may support clinicians. In this study, we explore the performance of a deep convolutional neural network to classify diabetic foot and venous leg ulcers using wound images. We trained a convolutional neural network on 863 cropped wound images. Using a hold-out test set with 80 images, the model yielded an F1-score of 0.85 on the cropped and 0.70 on the full images. This study shows promising results. However, the model must be extended in terms of wound images and wound types for application in clinical practice.

Keywords: Clinical Decision Support System; Convolutional Neural Networks; Diabetic Foot Ulcer; Health Information Technology; Image Classification; Transfer Learning; Wound Care.

PubMed Disclaimer

LinkOut - more resources