A Framework for Descriptive Epidemiology
- PMID: 35774001
- PMCID: PMC10144679
- DOI: 10.1093/aje/kwac115
A Framework for Descriptive Epidemiology
Abstract
In this paper, we propose a framework for thinking through the design and conduct of descriptive epidemiologic studies. A well-defined descriptive question aims to quantify and characterize some feature of the health of a population and must clearly state: 1) the target population, characterized by person and place, and anchored in time; 2) the outcome, event, or health state or characteristic; and 3) the measure of occurrence that will be used to summarize the outcome (e.g., incidence, prevalence, average time to event, etc.). Additionally, 4) any auxiliary variables will be prespecified and their roles as stratification factors (to characterize the outcome distribution) or nuisance variables (to be standardized over) will be stated. We illustrate application of this framework to describe the prevalence of viral suppression on December 31, 2019, among people living with human immunodeficiency virus (HIV) who had been linked to HIV care in the United States. Application of this framework highlights biases that may arise from missing data, especially 1) differences between the target population and the analytical sample; 2) measurement error; 3) competing events, late entries, loss to follow-up, and inappropriate interpretation of the chosen measure of outcome occurrence; and 4) inappropriate adjustment.
Keywords: bias; checklist; data analysis; description; framework.
© The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Comment in
-
Invited Commentary: The Importance of Descriptive Epidemiology.Am J Epidemiol. 2022 Nov 19;191(12):2071-2072. doi: 10.1093/aje/kwac153. Am J Epidemiol. 2022. PMID: 36004688
-
RE: "A FRAMEWORK FOR DESCRIPTIVE EPIDEMIOLOGY".Am J Epidemiol. 2023 Apr 6;192(4):681-682. doi: 10.1093/aje/kwad009. Am J Epidemiol. 2023. PMID: 36623844 No abstract available.
-
RE: "A FRAMEWORK FOR DESCRIPTIVE EPIDEMIOLOGY".Am J Epidemiol. 2023 Apr 6;192(4):680. doi: 10.1093/aje/kwac215. Am J Epidemiol. 2023. PMID: 36642499 No abstract available.
References
-
- von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495–1499. - PubMed
-
- Robins JM. Data, design, and background knowledge in etiologic inference. Epidemiology. 2001;12(3):313–320. - PubMed
-
- Rubin DB. The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Stat Med. 2007;26(1):20–36. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical