Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 17;128(24):247001.
doi: 10.1103/PhysRevLett.128.247001.

Coherent and Incoherent Tunneling into Yu-Shiba-Rusinov States Revealed by Atomic Scale Shot-Noise Spectroscopy

Affiliations

Coherent and Incoherent Tunneling into Yu-Shiba-Rusinov States Revealed by Atomic Scale Shot-Noise Spectroscopy

U Thupakula et al. Phys Rev Lett. .

Abstract

The pair breaking potential of individual magnetic impurities in s-wave superconductors generates localized states inside the superconducting gap commonly referred to as Yu-Shiba-Rusinov (YSR) states whose isolated nature makes them promising building blocks for artificial structures that may host Majorana fermions. One of the challenges in this endeavor is to understand their intrinsic lifetime, ℏ/Λ, which is expected to be limited by the inelastic coupling with the continuum thus leading to decoherence. Here we use shot-noise scanning tunneling microscopy to reveal that electron tunneling into superconducting 2H-NbSe_{2} mediated by YSR states is not Poissonian, but ordered as a function of time, as evidenced by a reduction of the noise. Moreover, our data show the concomitant transfer of charges e and 2e, indicating that incoherent single particle and coherent Andreev processes operate simultaneously. From the quantitative agreement between experiment and theory we obtain Λ=1 μeV≪k_{B}T demonstrating that shot noise can probe energy scales and timescales inaccessible by conventional spectroscopy whose resolution is thermally limited.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources