Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct:160:110088.
doi: 10.1016/j.enzmictec.2022.110088. Epub 2022 Jun 20.

Electrochemical detection of gram-negative bacteria through mastoparan-capped magnetic nanoparticle

Affiliations

Electrochemical detection of gram-negative bacteria through mastoparan-capped magnetic nanoparticle

Alberto G da Silva Junior et al. Enzyme Microb Technol. 2022 Oct.

Abstract

The increasing number of multidrug resistance microorganisms is an alarming threat, and their rapid detection is essential to prevent nosocomial, foodborne, or waterborne infections. Many peptides derived from the venom of wasp Synoeca surinama have antimicrobial activity against Gram-positive and Gram-negative bacteria. Synoeca-MP, an antimicrobial peptide (AMP) from mastoparan family, seems to increase bacterial membrane permeability, promoting cytotoxicity and membrane disruption. Here Synoeca-MP was evaluated as biorecognition element tethered over chitosan-coated magnetic nanoparticles (Fe3O4-Chit). The transducing layer of the biosensor was developed from the self-assembling of 4-mercaptobenzoic acid (4-MBA) monolayer onto gold substrate. Atomic force microscopy (AFM) analyses confirmed the biointeraction between AMP and different pathogens membranes. The fabrication and performance of the biosensing assembly were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Detection of Enterococcus faecalis (G+), Klebsiella pneumoniae (G-), Pseudomonas aeruginosa (G-), and Candida tropicalis was assessed in a recognition range from 101 to 105 CFU.mL-1. An instrumental limit of detection of 10 CFU.mL-1 was obtained for each specimen. However, the device presented a preferential selectivity towards Gram-negative bacteria. The proposed biosensor is a sensitive, fast, and straightforward platform for microbial detection in aqueous samples, envisaged for environmental monitoring applications.

Keywords: Antimicrobial peptide; Biosensor; Cyclic voltammetry; Electrochemical impedance; Magnetic nanoparticles; Synoeca-MP.

PubMed Disclaimer

MeSH terms

LinkOut - more resources