Editorial for "Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning"
- PMID: 35778673
- DOI: 10.1002/jmri.28329
Editorial for "Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning"
Comment on
-
Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning.J Magn Reson Imaging. 2023 Mar;57(3):871-881. doi: 10.1002/jmri.28332. Epub 2022 Jul 1. J Magn Reson Imaging. 2023. PMID: 35775971
References
-
- Kang H, Witanto JN, Pratama K, et al. Fully automated segmentation and volumetric measurement of intracranial meningioma using deep learning. J Magn Reson Imaging 2023;57:871-881.
-
- Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 2021;18:203-211.
-
- Neromyliotis E, Kalamatianos T, Paschalis A, et al. Machine learning in meningioma MRI: Past to present. A narrative review. J Magn Reson Imaging 2022;55:48-60.
-
- Maier H, Öfner D, Hittmair A, Kitz K, Budka H. Classic, atypical, and anaplastic meningioma: Three histopathological subtypes of clinical relevance. J Neurosurg 1992;77:616-623.
-
- Okuchi S, Okada T, Yamamoto A, et al. Grading meningioma: A comparative study of thallium-SPECT and FDG-PET. Medicine 2015;94:e549.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
