Engineering Citrobacter freundii using CRISPR/Cas9 system
- PMID: 35779647
- DOI: 10.1016/j.mimet.2022.106533
Engineering Citrobacter freundii using CRISPR/Cas9 system
Abstract
The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated proteins) system is a useful tool to edit genomes quickly and efficiently. However, the use of CRISPR/Cas9 to edit bacterial genomes has been limited to select microbial chassis primarily used for bioproduction of high value products. Thus, expansion of CRISPR/Cas9 tools to other microbial organisms is needed. Here, our aim was to assess the suitability of CRISPR/Cas9 for genome editing of the Citrobacter freundii type strain ATCC 8090. We evaluated the commonly used two plasmid pCas/pTargetF system to enable gene deletions and insertions in C. freundii and determined editing efficiency. The CRISPR/Cas9 based method enabled high editing efficiency (~91%) for deletion of galactokinase (galk) and enabled deletion with various single guide RNA (sgRNA) sequences. To assess the ability of CRISPR/Cas9 tools to insert genes, we used the fluorescent reporter mNeonGreen, an endopeptidase (yebA), and a transcriptional regulator (xylS) and found successful insertion with high efficiency (81-100%) of each gene individually. These results strengthen and expand the use of CRISPR/Cas9 genome editing to C. freundii as an additional microbial chassis.
Keywords: CRISPR/Cas; Citrobacter freundii; Genome editing; sgRNA.
Copyright © 2022 Merck Sharp & Dohme Corp., a subsidiary Merck & Co., Inc. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous
