Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 16:(184).
doi: 10.3791/64045.

Generation of Human Patient iPSC-derived Retinal Organoids to Model Retinitis Pigmentosa

Affiliations

Generation of Human Patient iPSC-derived Retinal Organoids to Model Retinitis Pigmentosa

Chao Ma et al. J Vis Exp. .

Abstract

Retinitis pigmentosa (RP) is a rare and inherited retinal degenerative disease with a prevalence of approximately 1/4,000 people worldwide. The majority of RP patients have progressive photoreceptor degeneration leading to peripheral vision loss, night blindness, and finally, total blindness. To date, thousands of mutations in more than 90 genes have been reported to be associated with RP. Currently, there are few animal models available for all the affected genes and different types of mutations, which largely hampers the deciphering of the mechanisms underlying the gene/mutation pathology and limits treatment and drug development. Patient induced pluripotent stem cell (iPSC)-derived 3D retinal organoids (ROs) have provided a better system to model the human early-onset disease than cells and animals. In order to study RP, those patient-derived 3D retinal organoids were utilized to recapitulate the clinical phenotypes of RP. In the RP patient-derived ROs, Rhodopsin mislocalization was clearly displayed. Compared with other animal models, patient iPSC-derived retinal organoid models more closely recapitulated RP features and represent an ideal approach for investigating the disease pathogenesis and for drug development.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources