[Research progress and application of transfer entropy algorithm]
- PMID: 35788531
- PMCID: PMC10950766
- DOI: 10.7507/1001-5515.202109067
[Research progress and application of transfer entropy algorithm]
Abstract
In recent years, exploring the physiological and pathological mechanisms of brain functional integration from the neural network level has become one of the focuses of neuroscience research. Due to the non-stationary and nonlinear characteristics of neural signals, its linear characteristics are not sufficient to fully explain the potential neurophysiological activity mechanism in the implementation of complex brain functions. In order to overcome the limitation that the linear algorithm cannot effectively analyze the nonlinear characteristics of signals, researchers proposed the transfer entropy (TE) algorithm. In recent years, with the introduction of the concept of brain functional network, TE has been continuously optimized as a powerful tool for nonlinear time series multivariate analysis. This paper first introduces the principle of TE algorithm and the research progress of related improved algorithms, discusses and compares their respective characteristics, and then summarizes the application of TE algorithm in the field of electrophysiological signal analysis. Finally, combined with the research progress in recent years, the existing problems of TE are discussed, and the future development direction is prospected.
近年来,从神经网络层面探索脑功能整合的相关生理病理机制已经成为神经科学领域研究关注的焦点之一。由于神经信号具有非平稳和非线性的特性,其线性特征不足以充分解释复杂脑功能执行过程中潜在的神经生理活动机制。为克服线性算法无法有效分析信号非线性特征的局限性,研究人员提出了传递熵(TE)算法。近年来,随着脑功能网络概念的引入,TE作为非线性时间序列多元分析的有力工具被不断优化。本文先介绍了TE算法的原理以及相关改进算法的研究进展,探讨比较了它们各自的特点,然后总结了TE算法在电生理信号分析领域的应用。最后,结合近几年的研究进展,探讨了TE目前存在的问题,并展望了其未来的发展方向。.
Keywords: Brain functional network; Neural signal analysis; Transfer entropy.
Conflict of interest statement
利益冲突声明:本文全体作者均声明不存在利益冲突。
Similar articles
-
[Research progress on multiscale entropy algorithm and its application in neural signal analysis].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Jun 25;37(3):541-548. doi: 10.7507/1001-5515.201908044. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020. PMID: 32597098 Free PMC article. Chinese.
-
TRENTOOL: a Matlab open source toolbox to analyse information flow in time series data with transfer entropy.BMC Neurosci. 2011 Nov 18;12:119. doi: 10.1186/1471-2202-12-119. BMC Neurosci. 2011. PMID: 22098775 Free PMC article.
-
Exploring neural directed interactions with transfer entropy based on an adaptive kernel density estimator.Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4342-5. doi: 10.1109/EMBC.2013.6610507. Annu Int Conf IEEE Eng Med Biol Soc. 2013. PMID: 24110694 Free PMC article.
-
Nonlinear System Identification of Neural Systems from Neurophysiological Signals.Neuroscience. 2021 Mar 15;458:213-228. doi: 10.1016/j.neuroscience.2020.12.001. Epub 2020 Dec 11. Neuroscience. 2021. PMID: 33309967 Free PMC article. Review.
-
Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches.Sleep Med Rev. 2018 Feb;37:85-93. doi: 10.1016/j.smrv.2017.01.003. Epub 2017 Jan 29. Sleep Med Rev. 2018. PMID: 28392169 Review.
References
-
- Li Fei, Wang Xuewei, Lin Qiang, et al Unified model selection approach based on minimum description length principle in granger causality analysis. IEEE Access. 2020;8:68400–68416. doi: 10.1109/ACCESS.2020.2987033. - DOI
-
- Olejarczyk E, Zuchowicz U, Wozniak-Kwasniewska A, et al The impact of repetitive transcranial magnetic stimulation on functional connectivity in major depressive disorder and bipolar disorder evaluated by directed transfer function and indices based on graph theory. Int J Neural Syst. 2020;30(4):2050015. doi: 10.1142/S012906572050015X. - DOI - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources