Efficient and robust methods for causally interpretable meta-analysis: Transporting inferences from multiple randomized trials to a target population
- PMID: 35789478
- PMCID: PMC10948002
- DOI: 10.1111/biom.13716
Efficient and robust methods for causally interpretable meta-analysis: Transporting inferences from multiple randomized trials to a target population
Abstract
We present methods for causally interpretable meta-analyses that combine information from multiple randomized trials to draw causal inferences for a target population of substantive interest. We consider identifiability conditions, derive implications of the conditions for the law of the observed data, and obtain identification results for transporting causal inferences from a collection of independent randomized trials to a new target population in which experimental data may not be available. We propose an estimator for the potential outcome mean in the target population under each treatment studied in the trials. The estimator uses covariate, treatment, and outcome data from the collection of trials, but only covariate data from the target population sample. We show that it is doubly robust in the sense that it is consistent and asymptotically normal when at least one of the models it relies on is correctly specified. We study the finite sample properties of the estimator in simulation studies and demonstrate its implementation using data from a multicenter randomized trial.
Keywords: causal inference; combining information; evidence synthesis; generalizability; meta-analysis; research synthesis; transportability.
© 2022 The International Biometric Society.
Similar articles
-
Toward Causally Interpretable Meta-analysis: Transporting Inferences from Multiple Randomized Trials to a New Target Population.Epidemiology. 2020 May;31(3):334-344. doi: 10.1097/EDE.0000000000001177. Epidemiology. 2020. PMID: 32141921 Free PMC article.
-
A Two-Stage Method for Extending Inferences From a Collection of Trials.Stat Med. 2025 Jun;44(13-14):e70146. doi: 10.1002/sim.70146. Stat Med. 2025. PMID: 40469050 Free PMC article.
-
Generalizing causal inferences from individuals in randomized trials to all trial-eligible individuals.Biometrics. 2019 Jun;75(2):685-694. doi: 10.1111/biom.13009. Epub 2019 Jun 21. Biometrics. 2019. PMID: 30488513 Free PMC article.
-
Addressing Systematic Missing Data in the Context of Causally Interpretable Meta-analysis.Prev Sci. 2023 Nov;24(8):1648-1658. doi: 10.1007/s11121-023-01586-2. Epub 2023 Sep 20. Prev Sci. 2023. PMID: 37726579 Review.
-
Improving transportability of randomized controlled trial inference using robust prediction methods.Stat Methods Med Res. 2023 Dec;32(12):2365-2385. doi: 10.1177/09622802231210944. Epub 2023 Nov 7. Stat Methods Med Res. 2023. PMID: 37936293 Review.
Cited by
-
A survey of methodologies on causal inference methods in meta-analyses of randomized controlled trials.Syst Rev. 2021 Jun 9;10(1):170. doi: 10.1186/s13643-021-01726-1. Syst Rev. 2021. PMID: 34108033 Free PMC article.
-
Data Integration in Causal Inference.Wiley Interdiscip Rev Comput Stat. 2023 Jan-Feb;15(1):e1581. doi: 10.1002/wics.1581. Epub 2022 Apr 8. Wiley Interdiscip Rev Comput Stat. 2023. PMID: 36713955 Free PMC article.
-
Evidence Synthesis for Complex Interventions Using Meta-Regression Models.Am J Epidemiol. 2024 Feb 5;193(2):323-338. doi: 10.1093/aje/kwad184. Am J Epidemiol. 2024. PMID: 37689835 Free PMC article.
-
Systematically missing data in causally interpretable meta-analysis.Biostatistics. 2024 Apr 15;25(2):289-305. doi: 10.1093/biostatistics/kxad006. Biostatistics. 2024. PMID: 36977366 Free PMC article.
-
Causally Interpretable Meta-analysis: Application in Adolescent HIV Prevention.Prev Sci. 2022 Apr;23(3):403-414. doi: 10.1007/s11121-021-01270-3. Epub 2021 Jul 9. Prev Sci. 2022. PMID: 34241752 Free PMC article.
References
-
- Bickel PJ, Klaassen CA, Wellner JA, and Ritov Y (1993). Efficient and adaptive estimation for semiparametric models. Johns Hopkins University Press; Baltimore.
-
- Breslow NE, Robins JM, Wellner JA, et al. (2000). On the semi-parametric efficiency of logistic regression under case-control sampling. Bernoulli 6, 447–455.
-
- Cheng D, Ayyagari R, and Signorovitch J (2020). The statistical performance of matching-adjusted indirect comparisons: Estimating treatment effects with aggregate external control data. The Annals of Applied Statistics 14, 1806–1833.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources