Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2022 Jul 6;12(7):1612-1614.
doi: 10.1158/2159-8290.CD-22-0492.

Inducing Hypermutability to Promote Anti-PD-1 Therapy Response

Affiliations
Editorial

Inducing Hypermutability to Promote Anti-PD-1 Therapy Response

Jason A Willis et al. Cancer Discov. .

Abstract

The lack of clinical activity from various immune-checkpoint blockade approaches in mismatch repair- proficient (MMRp) colorectal cancer has demonstrated a critical need for novel approaches. In this issue, Crisafulli and colleagues provide proof of concept for the induction of hypermutability through the use of temozolomide as a potential pathway for enabling a productive anti-PD-1 immune response in MMRp colorectal cancer. See related article by Crisafulli et al., p. 1656 (1) .

Trial registration: ClinicalTrials.gov NCT03519412.

PubMed Disclaimer

Comment on

References

    1. Crisafulli G, Sartore-Bianchi A, Lazzari L, Pietrantonio F, Amatu A, Macagno M, et al. Temozolomide treatment alters mismatch repair and boosts mutational burden in tumor and blood of colorectal cancer patients. Cancer Discov 2022;12:1656–75. - PMC - PubMed
    1. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;357:409–13. - PMC - PubMed
    1. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of mutational signatures in human cancer. Nature 2020;578:94–101. - PMC - PubMed
    1. Hunter C, Smith R, Cahill DP, Stephens P, Stevens C, Teague J, et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 2006;66:3987–91. - PMC - PubMed
    1. Cahill DP, Levine KK, Betensky RA, Codd PJ, Romany CA, Reavie LB, et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 2007;13:2038–45. - PMC - PubMed

Associated data