Fabrication, Properties, and Biomedical Applications of Calcium-Containing Cellulose-Based Composites
- PMID: 35795166
- PMCID: PMC9252099
- DOI: 10.3389/fbioe.2022.937266
Fabrication, Properties, and Biomedical Applications of Calcium-Containing Cellulose-Based Composites
Abstract
Calcium-containing cellulose-based composites possess the advantages of high mechanical strength, excellent osteoconductivity, biocompatibility, biodegradation, and bioactivity, which represent a promising application system in the biomedical field. Calcium-containing cellulose-based composites have become the hotspot of study of various biomedical fields. In this mini-review article, the synthesis of calcium-containing cellulose-based composites is summarized via a variety of methods such as the biomimetic mineralization method, microwave method, co-precipitation method, hydrothermal method, freeze-drying method, mechanochemical reaction method, and ultrasound method. The development on the fabrication, properties, and applications of calcium-containing cellulose-based composites is highlighted. The as-existed problems and future developments of cellulose-based composites are provided. It is expected that calcium-containing cellulose-based composites are the ideal candidate for biomedical application.
Keywords: biomedical application; calcium carbonate; cellulose; composites; hydroxyapatite.
Copyright © 2022 Shi, Lang, Wang, Zhou and Ma.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures




Similar articles
-
Bioactivity and mechanical properties of cellulose/carbonate hydroxyapatite composites prepared in situ through mechanochemical reaction.J Biomater Appl. 2006 Oct;21(2):179-94. doi: 10.1177/0885328206059796. Epub 2006 Jan 27. J Biomater Appl. 2006. PMID: 16443626
-
Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications: A Critical Review.Acta Biomater. 2022 Oct 1;151:1-44. doi: 10.1016/j.actbio.2022.07.048. Epub 2022 Jul 31. Acta Biomater. 2022. PMID: 35921991 Review.
-
Organized mineralized cellulose nanostructures for biomedical applications.J Mater Chem B. 2023 Jun 21;11(24):5321-5349. doi: 10.1039/d2tb02611b. J Mater Chem B. 2023. PMID: 36892529 Review.
-
Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products.Carbohydr Polym. 2021 Dec 1;273:118565. doi: 10.1016/j.carbpol.2021.118565. Epub 2021 Aug 27. Carbohydr Polym. 2021. PMID: 34560976 Review.
-
Synthesis and characterization of cellulose/hydroxyapatite based dental restorative composites.J Biomater Sci Polym Ed. 2020 Oct;31(14):1806-1819. doi: 10.1080/09205063.2020.1777827. Epub 2020 Jun 12. J Biomater Sci Polym Ed. 2020. PMID: 32493173
Cited by
-
Vaterite microparticle-loaded methylene blue for photodynamic activity in macrophages infected with Leishmania braziliensis.Photochem Photobiol Sci. 2023 Aug;22(8):1977-1989. doi: 10.1007/s43630-023-00426-0. Epub 2023 Apr 28. Photochem Photobiol Sci. 2023. PMID: 37115408
-
Development of Novel Tetracycline and Ciprofloxacin Loaded Silver Doped Hydroxyapatite Suspensions for Biomedical Applications.Antibiotics (Basel). 2022 Dec 31;12(1):74. doi: 10.3390/antibiotics12010074. Antibiotics (Basel). 2022. PMID: 36671274 Free PMC article.
-
Investigation of Calcium Phosphate-Based Biopolymer Composite Scaffolds for Bone Tissue Engineering.Int J Mol Sci. 2024 Dec 22;25(24):13716. doi: 10.3390/ijms252413716. Int J Mol Sci. 2024. PMID: 39769477 Free PMC article.
References
-
- Addadi L., Raz S., Weiner S. (2003). Taking Advantage of Disorder: Amorphous Calcium Carbonate and its Roles in Biomineralization. Adv. Mat. 15 (12), 959–970. 10.1002/adma.200300381 10.1002/adma.200300381 | Google Scholar - DOI - DOI
-
- Baghbanzadeh M., Carbone L., Cozzoli P. D., Kappe C. O. (2011). Microwave-assisted Synthesis of Colloidal Inorganic Nanocrystals. Angew. Chem. Int. Ed. 50, 11312–11359. 10.1002/anie.201101274 10.1002/anie.201101274 | Google Scholar - DOI - DOI - PubMed
-
- Bang J. H., Suslick K. S. (2010). Applications of Ultrasound to the Synthesis of Nanostructured Materials. Adv. Mat. 22, 1039–1059. 10.1002/adma.200904093 PubMed Abstract | 10.1002/adma.200904093 | Google Scholar - DOI - DOI - PubMed
-
- Byrappa K., Adschiri T. (2007). Hydrothermal Technology for Nanotechnology. Prog. Cryst. Growth Charact. Mater. 53, 117–166. 10.1016/j.pcrysgrow.2007.04.001 10.1016/j.pcrysgrow.2007.04.001 | Google Scholar - DOI - DOI
-
- Chan C.-M., Wu J., Li J.-X., Cheung Y.-K. (2002). Polypropylene/calcium Carbonate Nanocomposites. Polymer 43, 2981–2992. 10.1016/s0032-3861(02)00120-9 10.1016/s0032-3861(02)00120-9 | Google Scholar - DOI - DOI
Publication types
LinkOut - more resources
Full Text Sources