Full experimental determination of tunneling time with attosecond-scale streaking method
- PMID: 35798716
- PMCID: PMC9262890
- DOI: 10.1038/s41377-022-00911-8
Full experimental determination of tunneling time with attosecond-scale streaking method
Abstract
Tunneling is one of the most fundamental and ubiquitous processes in the quantum world. The question of how long a particle takes to tunnel through a potential barrier has sparked a long-standing debate since the early days of quantum mechanics. Here, we propose and demonstrate a novel scheme to accurately determine the tunneling time of an electron. In this scheme, a weak laser field is used to streak the tunneling current produced by a strong elliptically polarized laser field in an attoclock configuration, allowing us to retrieve the tunneling ionization time relative to the field maximum with a precision of a few attoseconds. This overcomes the difficulties in previous attoclock measurements wherein the Coulomb effect on the photoelectron momentum distribution has to be removed with theoretical models and it requires accurate information of the driving laser fields. We demonstrate that the tunneling time of an electron from an atom is close to zero within our experimental accuracy. Our study represents a straightforward approach toward attosecond time-resolved imaging of electron motion in atoms and molecules.
© 2022. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures




References
-
- Krausz F, Ivanov M. Attosecond physics. Rev. Mod. Phys. 2009;81:163–234. doi: 10.1103/RevModPhys.81.163. - DOI
-
- McPherson A, et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Optical Soc. Am. B. 1987;4:595–601. doi: 10.1364/JOSAB.4.000595. - DOI
-
- Ferray M, et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B: At., Mol. Optical Phys. 1988;21:L31. doi: 10.1088/0953-4075/21/3/001. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources