Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates
- PMID: 35799130
- PMCID: PMC9263067
- DOI: 10.1186/s12879-022-07558-1
Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates
Abstract
Background: Klebsiella pneumoniae strains have been divided into two major categories: classical K. pneumoniae, which are frequently multidrug-resistant and cause hospital-acquired infections in patients with impaired defenses, and hypervirulent K. pneumoniae, which cause severe community-acquired and disseminated infections in normal hosts. Both types of infections may lead to bacteremia and are associated with significant morbidity and mortality. The relative burden of these two types of K. pneumoniae among bloodstream isolates within the United States is not well understood.
Methods: We evaluated consecutive K. pneumoniae isolates cultured from the blood of hospitalized patients at Northwestern Memorial Hospital (NMH) in Chicago, Illinois between April 2015 and April 2017. Bloodstream isolates underwent whole genome sequencing, and sequence types (STs), capsule loci (KLs), virulence genes, and antimicrobial resistance genes were identified in the genomes using the bioinformatic tools Kleborate and Kaptive. Patient demographic, comorbidity, and infection information, as well as the phenotypic antimicrobial resistance of the isolates were extracted from the electronic health record. Candidate hypervirulent isolates were tested in a murine model of pneumonia, and their plasmids were characterized using long-read sequencing. We also extracted STs, KLs, and virulence and antimicrobial resistance genes from the genomes of bloodstream isolates submitted from 33 United States institutions between 2007 and 2021 to the National Center for Biotechnology Information (NCBI) database.
Results: Consecutive K. pneumoniae bloodstream isolates (n = 104, one per patient) from NMH consisted of 75 distinct STs and 51 unique capsule loci. The majority of these isolates (n = 58, 55.8%) were susceptible to all tested antibiotics except ampicillin, but 17 (16.3%) were multidrug-resistant. A total of 32 (30.8%) of these isolates were STs of known high-risk clones, including ST258 and ST45. In particular, 18 (17.3%) were resistant to ceftriaxone (of which 17 harbored extended-spectrum beta-lactamase genes) and 9 (8.7%) were resistant to meropenem (all of which harbored a carbapenemase genes). Four (3.8%) of the 104 isolates were hypervirulent K. pneumoniae, as evidenced by hypermucoviscous phenotypes, high levels of virulence in a murine model of pneumonia, and the presence of large plasmids similar to characterized hypervirulence plasmids. These isolates were cultured from patients who had not recently traveled to Asia. Two of these hypervirulent isolates belonged to the well characterized ST23 lineage and one to the re-emerging ST66 lineage. Of particular concern, two of these isolates contained plasmids with tra conjugation loci suggesting the potential for transmission. We also analyzed 963 publicly available genomes of K. pneumoniae bloodstream isolates from locations within the United States. Of these, 465 (48.3%) and 760 (78.9%) contained extended-spectrum beta-lactamase genes or carbapenemase genes, respectively, suggesting a bias towards submission of antibiotic-resistant isolates. The known multidrug-resistant high-risk clones ST258 and ST307 were the predominant sequence types. A total of 32 (3.3%) of these isolates contained aerobactin biosynthesis genes and 26 (2.7%) contained at least two genetic features of hvKP strains, suggesting elevated levels of virulence. We identified 6 (0.6%) isolates that were STs associated with hvKP: ST23 (n = 4), ST380 (n = 1), and ST65 (n = 1).
Conclusions: Examination of consecutive isolates from a single center demonstrated that multidrug-resistant high-risk clones are indeed common, but a small number of hypervirulent K. pneumoniae isolates were also observed in patients with no recent travel history to Asia, suggesting that these isolates are undergoing community spread in the United States. A larger collection of publicly available bloodstream isolate genomes also suggested that hypervirulent K. pneumoniae strains are present but rare in the USA; however, this collection appears to be heavily biased towards highly antibiotic-resistant isolates (and correspondingly away from hypervirulent isolates).
Keywords: Bacteremia; Hypervirulent Klebsiella; Klebsiella pneumoniae; Pathogenesis; Whole-genome sequencing.
© 2022. The Author(s).
Conflict of interest statement
The authors declare that they have no competing interests.
Figures







Similar articles
-
Molecular epidemiology and clinical characteristics of carbapenem-resistant Klebsiella pneumoniae bloodstream and pneumonia isolates.Microbiol Spectr. 2025 Aug 5;13(8):e0063125. doi: 10.1128/spectrum.00631-25. Epub 2025 Jul 9. Microbiol Spectr. 2025. PMID: 40631745 Free PMC article.
-
Prevalence and features of hypervirulent Klebsiella pneumoniae in respiratory specimens at a US hospital system.Infect Immun. 2025 Jan 31;93(1):e0048624. doi: 10.1128/iai.00486-24. Epub 2024 Dec 11. Infect Immun. 2025. PMID: 39660916 Free PMC article. Review.
-
Evaluation of capsule polysaccharide (CPS)-specific antibodies for broad recognition of prominent multidrug-resistant Klebsiella pneumoniae.Microbiol Spectr. 2025 Jul;13(7):e0333824. doi: 10.1128/spectrum.03338-24. Epub 2025 May 22. Microbiol Spectr. 2025. PMID: 40401961 Free PMC article.
-
Molecular epidemiology of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae bloodstream infections from Aberdeen, Scotland, and their comparison to isolates from England.Microb Genom. 2025 Jun;11(6):001413. doi: 10.1099/mgen.0.001413. Microb Genom. 2025. PMID: 40553110 Free PMC article.
-
The mechanisms of resistance, epidemiological characteristics, and molecular evolution of carbapenem-resistant hypervirulent Klebsiella pneumoniae.Lab Med. 2025 Jul 11;56(4):323-335. doi: 10.1093/labmed/lmae110. Lab Med. 2025. PMID: 40072365 Review.
Cited by
-
Recovery of clinically relevant multidrug-resistant Klebsiella pneumoniae lineages from wastewater in Kumasi Metropolis, Ghana.Environ Microbiol Rep. 2024 Dec;16(6):e70018. doi: 10.1111/1758-2229.70018. Environ Microbiol Rep. 2024. PMID: 39516432 Free PMC article.
-
Prioritizing isolation precautions: a patient-centered approach to infection prevention and control.Antimicrob Steward Healthc Epidemiol. 2025 Jun 3;5(1):e123. doi: 10.1017/ash.2025.173. eCollection 2025. Antimicrob Steward Healthc Epidemiol. 2025. PMID: 40528936 Free PMC article. Review.
-
Clinical and genomic characterization of hypervirulent Klebsiella pneumoniae (hvKp) infections via passive surveillance in Southern California, 2020-2022.Front Microbiol. 2022 Oct 14;13:1001169. doi: 10.3389/fmicb.2022.1001169. eCollection 2022. Front Microbiol. 2022. PMID: 36312975 Free PMC article.
-
The global RNA-RNA interactome of Klebsiella pneumoniae unveils a small RNA regulator of cell division.Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2317322121. doi: 10.1073/pnas.2317322121. Epub 2024 Feb 20. Proc Natl Acad Sci U S A. 2024. PMID: 38377209 Free PMC article.
-
Differentiation of hypervirulent and classical Klebsiella pneumoniae with acquired drug resistance.mBio. 2024 Feb 14;15(2):e0286723. doi: 10.1128/mbio.02867-23. Epub 2024 Jan 17. mBio. 2024. PMID: 38231533 Free PMC article.
References
-
- Dhesi Z, Enne VI, Brealey D, Livermore DM, High J, Russell C, Colles A, Kandil H, Mack D, Martin D, Page V, Parker R, Roulston K, Singh S, Wey E, Swart AM, Stirling S, Barber JA, O'Grady J, Gant VA. Organisms causing secondary pneumonias in COVID-19 patients at 5 UK ICUs as detected with the FilmArray test. medRvix. 2020 doi: 10.1101/2020.06.22.20131573. - DOI
-
- Girometti N, Lewis RE, Giannella M, Ambretti S, Bartoletti M, Tedeschi S, Tumietto F, Cristini F, Trapani F, Gaibani P, Viale P. Klebsiella pneumoniae bloodstream infection: epidemiology and impact of inappropriate empirical therapy. Medicine (Baltimore) 2014;93:298–309. doi: 10.1097/MD.0000000000000111. - DOI - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous