Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 30;13(24):7347-7354.
doi: 10.1039/d2sc02205b. eCollection 2022 Jun 22.

RhodiumIII-catalyzed remote difunctionalization of arenes assisted by a relay directing group

Affiliations

RhodiumIII-catalyzed remote difunctionalization of arenes assisted by a relay directing group

Lincong Sun et al. Chem Sci. .

Abstract

Rhodium-catalyzed diverse tandem twofold C-H bond activation reactions of para-olefin-tethered arenes have been realized, with unsaturated reagents such as internal alkynes, dioxazolones, and isocyanates being the coupling partner as well as a relay directing group which triggers cyclization of the para-olefin group under oxidative or redox-neutral conditions. The reaction proceeded via initial ortho-C-H activation assisted by a built-in directing group in the arene, and the ortho-incorporation of the unsaturated coupling partner simultaneously generated a relay directing group that allows sequential C-H activation at the meta-position and subsequent cyclization of the para-olefins. The overall reaction represents C-C or N-C difunctionalization of the arene with the generation of diverse 2,3-dihydrobenzofuran platforms. The catalytic system proceeded with good efficiency, simple reaction conditions, and broad substrate scope. The diverse transformations of the products demonstrated the synthetic utility of this tandem reaction.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Metal-catalyzed selective C–H activation strategies.
Scheme 2
Scheme 2. Metal-catalyzed synthesis of 2,3-dihydrobenzofuran.
Scheme 3
Scheme 3. Substrate scope of alkynesa. a Reaction conditions: 1a (0.20 mmol), alkyne (0.26 mmol), [RhCp*Cl2]2 (5 mol%), CsOPiv (0.10 mmol, 0.5 equiv.), AgOAc (0.46 mmol, 2.3 equiv.), and t-AmOH (2 mL), at 120 °C under air for 12 h, and isolated yield.
Scheme 4
Scheme 4. Substrate scope of arenesa. a Reaction conditions: arene (0.20 mmol), 2a (0.26 mmol), [RhCp*Cl2]2 (5 mol%), CsOPiv (0.10 mmol, 0.5 equiv.), AgOAc (0.46 mmol, 2.3 equiv.), and t-AmOH (2 mL), at 120 °C under air for 12 h, and isolated yield. b DCE (2 mL) was used.
Scheme 5
Scheme 5. Substrate scope of directing groupsa. a Reaction conditions: arene (0.20 mmol), 2a (0.24 mmol), [RhCp*Cl2]2 (5 mol%), AgSbF6 (20 mol%), PivOH (1.0 eq.), AgOAc (2.3 eq.), 120 °C, air, 24 h, and isolated yield. b TFE (2.0 mL) was used and 100 °C. c (R)-Rh (2.5 mol%), AgSbF6 (10 mol%), PivOH (2.0 eq.) and MeOH (2.0 mL) were used, 80 °C, and 48 h. d NaOAc (1.0 eq.) and 1,4-dioxane (2.0 mL) were used and 80 °C. e MeOH (2.0 mL) was used. f AgF (2.3 eq.) and THF (2.0 mL) were used. g NaOAc (1.0 eq.) and THF (2.0 mL) were used. ht-AmOH (2.0 mL) was used.
Scheme 6
Scheme 6. Substrate scope of unsaturated reagents. Reaction conditions: a1a (0.20 mmol), 2 (0.26 mmol), [RhCp*Cl2]2 (5 mol%), AgSbF6 (20 mol%), PivOH (0.40 mmol, 2.0 equiv.), and HFIP (2 mL), at 110 °C under air for 36 h, and isolated yield. b1a (0.20 mmol), 2 (0.24 mmol), [RhCp*Cl2]2 (5 mol%), AgSbF6 (20 mol%), AgOAc (0.20 mmol, 1.0 equiv.), and DCM (2 mL), at 75 °C under N2 for 24 h, and isolated yield.
Scheme 7
Scheme 7. Synthetic transformations of compounds 3. Reaction conditions: (1) 3, 1-(triisopropylsilyl)ethynyl-1,2-benziodoxol-3(1H)-one (TIPS-EBX), [RhCp*Cl2]2, AgSbF6, MeOH, 60 °C, and 24 h. (2) 3, 3-phenyl-1,4,2-dioxazol-5-one (2zb), [RhCp*Cl2]2, AgSbF6, DCE, 80 °C, and 24 h. (3) 3, 3-diazopentane-2,4-dione, [RhCp*Cl2]2, AgSbF6, KOAc, DCE, 80 °C, N2, and 24 h. (4) 3, 1-isocyanato-4-methylbenzene, [RhCp*Cl2]2, AgSbF6, DCM, 80 °C, N2, and 12 h. (5) 3, 1,2-diphenylethyne, [RhCp*Cl2]2, AgSbF6, AgOTf, AgOAc, MeOH, 120 °C, N2, and 24 h.
Scheme 8
Scheme 8. Preliminary mechanistic studies.
Scheme 9
Scheme 9. Plausible mechanism.

Similar articles

Cited by

References

    1. For selected reviews of transition-metal-catalyzed C–H functionalization, see:

    2. McMurray L. O'Hara F. Gaunt M. J. Chem. Soc. Rev. 2011;40:1885–1898. doi: 10.1039/C1CS15013H. - DOI - PubMed
    3. Cho S. H. Kim J. Y. Kwak J. Chang S. Chem. Soc. Rev. 2011;40:5068–5083. doi: 10.1039/C1CS15082K. - DOI - PubMed
    4. Ackermann L. Chem. Rev. 2011;111:1315–1345. doi: 10.1021/cr100412j. - DOI - PubMed
    5. Li B.-J. Shi Z.-J. Chem. Soc. Rev. 2012;41:5588–5598. doi: 10.1039/C2CS35096C. - DOI - PubMed
    6. Arockiam P. B. Bruneau C. Dixneuf P. H. Chem. Rev. 2012;112:5879–5918. doi: 10.1021/cr300153j. - DOI - PubMed
    7. Shi Z. Koester D. C. Boultadakis-Arapinis M. Glorius F. J. Am. Chem. Soc. 2013;135:12204–12207. doi: 10.1021/ja406338r. - DOI - PubMed
    8. Chen Z. Wang B. Zhang J. Yu W. Liu Z. Zhang Y. Org. Chem. Front. 2015;2:1107–1295. doi: 10.1039/C5QO00004A. - DOI
    9. Song G. Li X. Acc. Chem. Res. 2015;48:1007–1020. doi: 10.1021/acs.accounts.5b00077. - DOI - PubMed
    10. Gensch T. Hopkinson M. N. Glorius F. Wencel-Delord J. Chem. Soc. Rev. 2016;45:2900–2936. doi: 10.1039/C6CS00075D. - DOI - PubMed
    11. Cera G. Ackermann L. Top. Curr. Chem. 2016;374:191. - PubMed
    12. Yang Y. Lan J. You J. Chem. Rev. 2017;117:8787–8863. doi: 10.1021/acs.chemrev.6b00567. - DOI - PubMed
    13. Hummel J. R. Boerth J. A. Ellman J. A. Chem. Rev. 2017;117:9163–9227. doi: 10.1021/acs.chemrev.6b00661. - DOI - PMC - PubMed
    14. Sambiagio C. Schönbauer D. Blieck R. Dao-Huy T. Pototschnig G. Schaaf P. Wiesinger T. Zia M. F. Wencel-Delord J. Besset T. Maes B. U. W. Schnürch M. Chem. Soc. Rev. 2018;47:6603–6743. doi: 10.1039/C8CS00201K. - DOI - PMC - PubMed
    15. Gandeepan P. Müller T. Zell D. Cera G. Warratz S. Ackermann L. Chem. Rev. 2019;119:2192–2452. doi: 10.1021/acs.chemrev.8b00507. - DOI - PubMed
    16. Dutta U. Maiti S. Bhattacharya T. Maiti D. Science. 2021;372 doi: 10.1126/science.abd5992. doi: 10.1126/science.abd5992. - DOI - DOI - PubMed
    17. Yu X. Zhang Z.-Z. Niu J.-L. Shi B.-F. Org. Chem. Front. 2022;9:1458–1484. doi: 10.1039/D1QO01884A. - DOI
    1. For selected examples, see:

    2. Ueura K. Satoh T. Miura M. Org. Lett. 2007;9:1407–1409. doi: 10.1021/ol070406h. - DOI - PubMed
    3. Ueura K. Satoh T. Miura M. J. Org. Chem. 2007;72:5362–5367. doi: 10.1021/jo070735n. - DOI - PubMed
    4. Rakshit S. Grohmann C. Besset T. Glorius F. J. Am. Chem. Soc. 2011;133:2350–2353. doi: 10.1021/ja109676d. - DOI - PubMed
    5. Guimond N. Gorelsky S. I. Fagnou K. J. Am. Chem. Soc. 2011;133:6449–6457. doi: 10.1021/ja201143v. - DOI - PubMed
    6. Hyster T. K. Knörr L. Ward T. R. Rovis T. Science. 2012;338:500–503. doi: 10.1126/science.1226132. - DOI - PMC - PubMed
    7. Hyster T. K. Dalton D. M. Rovis T. Chem. Sci. 2015;6:254–258. doi: 10.1039/C4SC02590C. - DOI - PMC - PubMed
    8. Semakul N. Jackson K. E. Paton R. S. Rovis T. Chem. Sci. 2017;8:1015–1020. doi: 10.1039/C6SC02587K. - DOI - PMC - PubMed
    9. Piou T. Romanov-Michailidis F. Romanova-Michaelides M. Jackson K. E. Semakul N. Taggart T. D. Newell B. S. Rithner C. D. Paton R. S. Rovis T. J. Am. Chem. Soc. 2017;139:1296–1310. doi: 10.1021/jacs.6b11670. - DOI - PMC - PubMed
    10. Ye B. Cramer N. Science. 2012;338:504–506. doi: 10.1126/science.1226938. - DOI - PubMed
    11. Wodrich M. D. Ye B. Gonthier J. F. Corminboeuf C. Cramer N. Chem.–Eur. J. 2014;20:15409–15418. doi: 10.1002/chem.201404515. - DOI - PubMed
    12. Wang D. Wang F. Song G. Li X. Angew. Chem., Int. Ed. 2012;51:12348–12352. doi: 10.1002/anie.201206918. - DOI - PubMed
    13. Qi Z. Wang M. Li X. Chem. Commun. 2014;50:9776–9778. doi: 10.1039/C4CC03627A. - DOI - PubMed
    14. Nguyen T. T. Grigorjeva L. Daugulis O. Angew. Chem., Int. Ed. 2018;57:1688–1691. doi: 10.1002/anie.201711968. - DOI - PMC - PubMed
    1. Leow D. Li G. Mei T.-S. Yu J.-Q. Nature. 2012;486:518–522. doi: 10.1038/nature11158. - DOI - PMC - PubMed
    1. Lee S. Lee H. Tan K. L. J. Am. Chem. Soc. 2013;135:18778–18781. doi: 10.1021/ja4107034. - DOI - PMC - PubMed
    2. Tang R.-Y. Li G. Yu J.-Q. Nature. 2014;507:215–220. doi: 10.1038/nature12963. - DOI - PMC - PubMed
    3. Yang G. Lindovska P. Zhu D. Kim J. Wang P. Tang R.-Y. Movassaghi M. Yu J.-Q. J. Am. Chem. Soc. 2014;136:10807–10813. doi: 10.1021/ja505737x. - DOI - PubMed
    4. Bera M. Modak A. Patra T. Maji A. Maiti D. Org. Lett. 2014;16:5760–5763. doi: 10.1021/ol502823c. - DOI - PubMed
    5. Bera M. Maji A. Sahoo S. K. Maiti D. Angew. Chem., Int. Ed. 2015;54:8515–8519. doi: 10.1002/anie.201503112. - DOI - PubMed
    6. Chu L. Shang M. Tanaka K. Chen Q. Pissarnitski N. Streckfuss E. Yu J.-Q. ACS Cent. Sci. 2015;1:394–399. doi: 10.1021/acscentsci.5b00312. - DOI - PMC - PubMed
    7. Patra T. Watile R. Agasti S. Naveen T. Maiti D. Chem. Commun. 2016;52:2027–2030. doi: 10.1039/C5CC09446A. - DOI - PubMed
    8. Li S. Cai L. Ji H. Yang L. Li G. Nat. Commun. 2016;7:10443–10450. doi: 10.1038/ncomms10443. - DOI - PMC - PubMed
    9. Maji A. Bhaskararao B. Singha S. Sunoj R. B. Maiti D. Chem. Sci. 2016;7:3147–3153. doi: 10.1039/C5SC04060D. - DOI - PMC - PubMed
    10. Bera M. Sahoo S. K. Maiti D. ACS Catal. 2016;6:3575–3579. doi: 10.1021/acscatal.6b00675. - DOI
    11. Xu H.-J. Lu Y. Farmer M. E. Wang H.-W. Zhao D. Kang Y.-S. Sun W.-Y. Yu J.-Q. J. Am. Chem. Soc. 2017;139:2200–2203. doi: 10.1021/jacs.6b13269. - DOI - PubMed
    12. Bag S. Jayarajan R. Mondal R. Maiti D. Angew. Chem., Int. Ed. 2017;56:3182–3186. doi: 10.1002/anie.201611360. - DOI - PubMed
    13. Bera M. Agasti S. Chowdhury R. Mondal R. Pal D. Maiti D. Angew. Chem., Int. Ed. 2017;56:5272–5276. doi: 10.1002/anie.201701579. - DOI - PubMed
    14. Dutta U. Modak A. Bhaskararao B. Bera M. Bag S. Mondal A. Lupton D. W. Sunoj R. B. Maiti D. ACS Catal. 2017;7:3162–3168. doi: 10.1021/acscatal.7b00247. - DOI
    15. Fang L. Saint-Denis T. G. Taylor B. L. H. Ahlquist S. Hong K. Liu S. S. Han L. L. Houk K. N. Yu J.-Q. J. Am. Chem. Soc. 2017;139:10702–10714. doi: 10.1021/jacs.7b03296. - DOI - PMC - PubMed
    16. Xu H.-J. Kang Y.-S. Shi H. Zhang P. Chen Y.-K. Zhang B. Liu Z.-Q. Zhao J. Sun W.-Y. Yu J.-Q. Lu Y. J. Am. Chem. Soc. 2019;141:76–79. doi: 10.1021/jacs.8b11038. - DOI - PubMed
    17. Achar T. K. Zhang X. Mondal R. Shanavas M. S. Maiti S. Maity S. Pal N. Paton R. S. Maiti D. Angew. Chem., Int. Ed. 2019;58:10353–10360. doi: 10.1002/anie.201904608. - DOI - PubMed
    18. Li S. Wang H. Weng Y. Li G. Angew. Chem., Int. Ed. 2019;58:18502–18507. doi: 10.1002/anie.201910691. - DOI - PubMed
    19. Porey S. Zhang X. Bhowmick S. Singh V. K. Guin S. Paton R. S. Maiti D. J. Am. Chem. Soc. 2020;142:3762–3774. doi: 10.1021/jacs.9b10646. - DOI - PubMed
    20. Bag S. S. K. Mondal A. Jayarajan R. Dutta U. Porey S. Sunoj R. B. Maiti D. J. Am. Chem. Soc. 2020;142:12453–12466. doi: 10.1021/jacs.0c05223. - DOI - PubMed
    21. Bag S. Jana S. Pradhan S. Bhowmick S. Goswami N. Sinha S. K. Maiti D. Nat. Commun. 2021;12:1393. doi: 10.1038/s41467-021-21633-2. - DOI - PMC - PubMed
    1. Wang X.-C. Gong W. Fang L.-Z. Zhu R.-Y. Li S. Engle K. M. Yu J.-Q. Nature. 2015;519:334–338. doi: 10.1038/nature14214. - DOI - PMC - PubMed