Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 30;13(24):7256-7263.
doi: 10.1039/d2sc02277j. eCollection 2022 Jun 22.

Three-component carboacylation of alkenes via cooperative nickelaphotoredox catalysis

Affiliations

Three-component carboacylation of alkenes via cooperative nickelaphotoredox catalysis

Dingyi Wang et al. Chem Sci. .

Abstract

Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C-C bonds through the cooperative action of nickel and sodium decatungstate catalysis. A wealth of ketones with high levels of structural complexity was rapidly obtained via direct functionalization of C(sp2)/C(sp3)-H bonds in a modular manner. Furthermore, a regioselective late-stage modification of natural products showcased the practical utility of the strategy, generally featuring high resource economy and ample substrate scope.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Synthetic approaches to carbonyl compounds.
Scheme 2
Scheme 2. Synthetic applications.
Scheme 3
Scheme 3. Late-stage functionalization of complex molecules. a Reaction conditions: 1 (1 mmol), 2 (0.4 mmol), 3 (0.2 mmol), Ni(dtbbpy)Br2 (10 mol%), NaDT (2 mol%), K2HPO4 (0.4 mmol) in acetone (0.2 M) at 30 °C under irradiation of LEDs (10 W, λ = 390 nm) for 24 hours. b1 (0.2 mmol), 2 (0.6 mmol), 3 (0.6 mmol), Ni(dtbbpy)Br2 (10 mol%), NaDT (2 mol%), K2HPO4 (0.4 mmol) in acetone (0.2 M) at 30 °C under irradiation of LEDs (10 W, λ = 390 nm) for 24 hours.
Scheme 4
Scheme 4. Mechanistic experiments.
Scheme 5
Scheme 5. Proposed mechanism.

References

    1. Derosa J. Apolinar O. Kang T. Tran V. T. Engle K. M. Chem. Sci. 2020;11:4287–4296. doi: 10.1039/C9SC06006E. - DOI - PMC - PubMed
    2. Zhang Z. Roisnel T. Dixneuf P. H. Soulé J.-F. Angew. Chem., Int. Ed. 2020;58:14110–14114. doi: 10.1002/anie.201906913. - DOI - PubMed
    3. Dhungana R. K. Kc S. Basnet P. Giri R. Chem. Rec. 2018;18:1314–1340. doi: 10.1002/tcr.201700098. - DOI - PubMed
    4. Zhang J. S. Liu L. Chen T. Han L. B. Chem.–Asian J. 2018;13:2277–2291. doi: 10.1002/asia.201800647. - DOI - PubMed
    1. Tu H. Wang F. Huo L. Li Y. Zhu S. Zhao X. Li H. Qing F. Chu L. J. Am. Chem. Soc. 2020;142:9604–9611. doi: 10.1021/jacs.0c03708. - DOI - PubMed
    2. Song L. Fu D.-M. Chen L. Jiang Y.-X. Ye J.-H. Zhu L. Lan Y. Fu Q. Yu D.-G. Angew. Chem., Int. Ed. 2020;59:21121–21128. doi: 10.1002/anie.202008630. - DOI - PubMed
    3. Wu X. Zhu C. Acc. Chem. Res. 2020;53:1620–1636. doi: 10.1021/acs.accounts.0c00306. - DOI - PubMed
    4. Li Z. Fang G. Gu Q. Liu X. Chem. Soc. Rev. 2020;49:32–48. doi: 10.1039/C9CS00681H. - DOI - PubMed
    5. Fan P. Lan Y. Zhang C. Wang C. J. Am. Chem. Soc. 2020;142:2180–2186. doi: 10.1021/jacs.9b12554. - DOI - PubMed
    6. Jiang H. Studer A. Chem. Soc. Rev. 2020;49:1790–1811. doi: 10.1039/C9CS00692C. - DOI - PubMed
    7. Li Z. Wang M. Shi Z. Angew. Chem., Int. Ed. 2020;60:186–190. doi: 10.1002/anie.202010839. - DOI - PubMed
    8. Wang X. Lu X. He S. Fu Y. Chem. Sci. 2020;11:7950–7956. doi: 10.1039/D0SC02054K. - DOI - PMC - PubMed
    9. Anthony D. Lin Q. Baudet J. Diao T. Angew. Chem., Int. Ed. 2019;58:3198–3202. doi: 10.1002/anie.201900228. - DOI - PMC - PubMed
    10. Wang D. Dong B. Wang Y. Qian J. Zhu J. Zhao Y. Shi Z. Nat. Commun. 2019;10:3539–3548. doi: 10.1038/s41467-019-11420-5. - DOI - PMC - PubMed
    11. Fu Q. Bo Z.-Y. Ye J.-H. Ju T. Huang H. Liao L.-L. Yu D.-G. Nat. Commun. 2019;10:3592–3600. doi: 10.1038/s41467-019-11528-8. - DOI - PMC - PubMed
    12. Zhang M. Xie J. Zhu C. Nat. Commun. 2018;9:3517–3526. doi: 10.1038/s41467-018-06019-1. - DOI - PMC - PubMed
    13. Wang F. Chen P. Liu G. Acc. Chem. Res. 2018;51:2036–2046. doi: 10.1021/acs.accounts.8b00265. - DOI - PubMed
    14. Yan M. Lo J. C. Edwards J. T. Baran P. S. J. Am. Chem. Soc. 2016;138:12692–12714. doi: 10.1021/jacs.6b08856. - DOI - PMC - PubMed
    1. Xiong T. Zhang Q. Chem. Soc. Rev. 2021;50:8857–8873. doi: 10.1039/D1CS00208B. - DOI - PubMed
    2. Sharma S. Singh J. Sharmaa A. Adv. Synth. Catal. 2021;363:3146–3169. doi: 10.1002/adsc.202100205. - DOI
    3. Pitzer L. Schwarz J. L. Glorius F. Chem. Sci. 2019;10:8285–8291. doi: 10.1039/C9SC03359A. - DOI - PMC - PubMed
    4. Jin Y. Wang C. Chem. Sci. 2019;10:1780–1785. doi: 10.1039/C8SC04279A. - DOI - PMC - PubMed
    5. Zhang Z. Gong L. Zhou X.-Y. Yan S.-S. Li J. Yu D.-G. Acta Chim. Sin. 2019;77:783–793. doi: 10.6023/A19060208. - DOI
    6. Koike T. Akita M. Chem. 2018;4:409–437. doi: 10.1016/j.chempr.2017.11.004. - DOI
    7. Sauer G. S. Lin S. ACS Catal. 2018;8:5175–5187. doi: 10.1021/acscatal.8b01069. - DOI
    8. Wang K. Ding Z. Zhou Z. Kong W. J. Am. Chem. Soc. 2018;140:12364–12368. doi: 10.1021/jacs.8b08190. - DOI - PubMed
    1. Wei X. Shu W. García-Domínguez A. Merino E. Nevado C. J. Am. Chem. Soc. 2020;142:13515–13522. doi: 10.1021/jacs.0c05254. - DOI - PubMed
    2. Shu W. García-Domínguez A. Quirls M. T. Mondal R. Cordenas D. J. Nevado C. J. Am. Chem. Soc. 2019;141:13812–13821. doi: 10.1021/jacs.9b02973. - DOI - PubMed
    3. García-Domínguez A. Mondal R. Nevado C. Angew. Chem., Int. Ed. 2019;58:12286–12290. doi: 10.1002/anie.201906692. - DOI - PubMed
    4. García-Domínguez A. Li Z. Nevado C. J. Am. Chem. Soc. 2017;139:6835–6838. doi: 10.1021/jacs.7b03195. - DOI - PubMed
    5. Merino E. Nevado C. Chem. Soc. Rev. 2014;43:6598–6608. doi: 10.1039/C4CS00025K. - DOI - PMC - PubMed
    1. Campbell M. W. Yuan M. Polites V. C. Gutierrez O. Molander G. A. J. Am. Chem. Soc. 2021;143:3901–3910. doi: 10.1021/jacs.0c13077. - DOI - PMC - PubMed
    2. Lipp A. Badir S. O. Molander G. A. Angew. Chem., Int. Ed. 2021;60:1714–1726. doi: 10.1002/anie.202007668. - DOI - PMC - PubMed
    3. Badir S. O. Molander G. A. Chem. 2020;6:1327–1339. doi: 10.1016/j.chempr.2020.05.013. - DOI - PMC - PubMed
    4. Campbell M. W. Compton J. S. Kelly C. B. Molander G. A. J. Am. Chem. Soc. 2019;141:20069–20078. doi: 10.1021/jacs.9b08282. - DOI - PMC - PubMed