Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 24;128(25):257402.
doi: 10.1103/PhysRevLett.128.257402.

Short-Pulsed Metamaterials

Affiliations

Short-Pulsed Metamaterials

Carlo Rizza et al. Phys Rev Lett. .

Abstract

We study a class of temporal metamaterials characterized by time-varying dielectric permittivity waveforms of duration much smaller than the characteristic wave-dynamical timescale. In the analogy between spatial and temporal metamaterials, such a short-pulsed regime can be viewed as the temporal counterpart of metasurfaces. We introduce a general and compact analytical formalism for modeling the interaction of a short-pulsed metamaterial with an electromagnetic wave packet. Specifically, we elucidate the role of local and nonlocal effects, as well as the time-reversal symmetry breaking, and we show how they can be harnessed to perform elementary analog computing, such as first and second derivatives. Our theory validated against full-wave numerical simulations suggests a novel route for manipulating electromagnetic waves without relying on long, periodic temporal modulations. Just as metasurfaces have played a pivotal role in the technological viability and practical applicability of conventional (spatial) metamaterials, short-pulsed metamaterials may catalyze the development of temporal and space-time metamaterials.

PubMed Disclaimer

LinkOut - more resources