Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 1;12(13):1708.
doi: 10.3390/ani12131708.

Molecular Survey and Genetic Characterization of Anaplasma marginale in Ticks Collected from Livestock Hosts in Pakistan

Affiliations

Molecular Survey and Genetic Characterization of Anaplasma marginale in Ticks Collected from Livestock Hosts in Pakistan

Zaibullah Khan et al. Animals (Basel). .

Abstract

Ticks transmit pathogens to animals and humans more often than any other arthropod vector. The rural economy of Pakistan mainly depends on livestock farming, and tick infestations cause severe problems in this sector. The present study aimed to molecularly characterize the Anaplasma spp. in hard ticks collected from six districts of Khyber Pakhtunkhwa, Pakistan. Ticks were collected from various livestock hosts, including cattle breeds (Holstein-Friesian, Jersey, Sahiwal, and Achai), Asian water buffaloes, sheep, and goats from March 2018 to February 2019. Collected ticks were morphologically identified and subjected to molecular screening of Anaplasma spp. by amplifying 16S rDNA sequences. Six hundred seventy-six ticks were collected from infested hosts (224/350, 64%). Among the nine morphologically identified tick species, the highest occurrence was noted for Rhipicephalus microplus (254, 37.6%), followed by Hyalomma anatolicum (136, 20.1%), Rhipicephalus haemaphysaloides (119, 17.6%), Rhipicephalus turanicus (116, 17.1%), Haemaphysalis montgomeryi (14, 2.1%), Hyalomma dromedarii (11, 1.6%), Haemaphysalis bispinosa (10, 1.5%), Hyalomma scupense (8, 1.2%), and Haemaphysalis kashmirensis (8, 1.2%). The occurrence of tick females was highest (260, 38.5%), followed by nymphs (246, 36.4%) and males (170, 25.1%). Overall, the highest occurrence of ticks was recorded in the Peshawar district (239, 35.3%), followed by Mardan (183, 27.1%), Charsadda (110, 16.3%), Swat (52, 7.7%), Shangla (48, 7.1%), and Chitral (44, 6.5%). Among these ticks, Anaplasma marginale was detected in R. microplus, R. turanicus, and R. haemaphysaloides. The 16S rDNA sequences showed high identity (98-100%) with A. marginale reported from Australia, China, Japan, Pakistan, Thailand, Uganda, and the USA. In phylogenetic analysis, the sequence of A. marginale clustered with the same species reported from Australia, China, Pakistan, Thailand, Uruguay, and the USA. Further molecular work regarding the diversity of tick species and associated pathogens is essential across the country.

Keywords: Anaplasma marginale; Pakistan; cattle; livestock; ticks.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Map showing study districts where tick specimens were collected.
Figure 2
Figure 2
The maximum likelihood phylogenetic tree of Anaplasma marginale was constructed based on a partial 16S rDNA sequence. Anaplasma boleense 16S rDNA sequences were used as an outgroup. The obtained sequence is represented with a black dot (ON306400).

References

    1. Guglielmone A.A., Petney T.N., Robbins R.G. Ixodidae (Acari: Ixodoidea): Descriptions and redescriptions of all known species from 1758 to 31 December 2019. Zootaxa. 2020;4871:1–322. doi: 10.11646/zootaxa.4871.1.1. - DOI - PubMed
    1. Parola P., Paddock C.D., Socolovschi C., Labruna M.B., Mediannikov O., Kernif T., Abdad M.Y., Stenos J., Bitam I., Fournier P.E., et al. Update on tick-borne rickettsioses around the world: A geographic approach. Clin. Microbiol. Rev. 2013;26:657–702. doi: 10.1128/CMR.00032-13. - DOI - PMC - PubMed
    1. Rego R.O., Trentelman J.J., Anguita J., Nijhof A.M., Sprong H., Klempa B., Hajdusek O., Tomás-Cortázar J., Azagi T., Strnad M. Counterattacking the tick bite: Towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit. Vectors. 2019;12:229. doi: 10.1186/s13071-019-3468-x. - DOI - PMC - PubMed
    1. Labruna M.B., Whitworth T., Horta M.C., Bouyer D.H., McBride J.W., Pinter A., Popov V., Gennari S.M., Walker D.H. Rickettsia species infecting Amblyomma cooperi ticks from an area in the state of Sao Paulo, Brazil, where Brazilian spotted fever is endemic. J. Clin. Microbiol. 2004;42:90–98. doi: 10.1128/JCM.42.1.90-98.2004. - DOI - PMC - PubMed
    1. Karim S., Budachetri K., Mukherjee N., Williams J., Kausar A., Hassan M.J., Adamson S., Dowd S.E., Apanskevich D., Arijo A., et al. A study of ticks and tick-borne livestock pathogens in Pakistan. PLoS Negl. Trop. Dis. 2017;11:e0005681. doi: 10.1371/journal.pntd.0005681. - DOI - PMC - PubMed

LinkOut - more resources