Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jul 5;11(13):3910.
doi: 10.3390/jcm11133910.

Artificial Intelligence in Cardiology-A Narrative Review of Current Status

Affiliations
Review

Artificial Intelligence in Cardiology-A Narrative Review of Current Status

George Koulaouzidis et al. J Clin Med. .

Abstract

Artificial intelligence (AI) is an integral part of clinical decision support systems (CDSS), offering methods to approximate human reasoning and computationally infer decisions. Such methods are generally based on medical knowledge, either directly encoded with rules or automatically extracted from medical data using machine learning (ML). ML techniques, such as Artificial Neural Networks (ANNs) and support vector machines (SVMs), are based on mathematical models with parameters that can be optimally tuned using appropriate algorithms. The ever-increasing computational capacity of today's computer systems enables more complex ML systems with millions of parameters, bringing AI closer to human intelligence. With this objective, the term deep learning (DL) has been introduced to characterize ML based on deep ANN (DNN) architectures with multiple layers of artificial neurons. Despite all of these promises, the impact of AI in current clinical practice is still limited. However, this could change shortly, as the significantly increased papers in AI, machine learning and deep learning in cardiology show. We highlight the significant achievements of recent years in nearly all areas of cardiology and underscore the mounting evidence suggesting how AI will take a central stage in the field.

Keywords: arrythmias; artificial intelligence; cardiac imaging; cardiology; heart failure; voice technology.

PubMed Disclaimer

Conflict of interest statement

None. A.K. is, since March 2021, a consultant for Jinshan. He is director of iCERV Ltd. and co-founder (and stakeholder) of AJM Medicaps Ltd. He has received a Given Imaging Ltd-ESGE grant and material support for clinical research from SynMed/Intromedic. In the last ten years, he has received honoraria & lecture fees from Jinshan, FalkPharma UK and Ferring. He has also received educational travel support from Aquilant, Jinshan, FalkPharma, Almirall, Ferring, and has participated in advisory board meetings for Tillots, Ankon, FalkPharma UK. The rest of the authors have no disclosures.

Figures

Figure 1
Figure 1
Risk-based approach to evaluate and categorize software designed for medical purposes. Category I-IV reflects an impact on patients being associated with medical utilization (inform, drive, treat, diagnose) and clinical scenarios that the service is intended for (non-serious, serious, critical). Non-MDDS—Non-Medical Device Data Systems; MDDS—Medical Device Data Systems; SaMD—Software as a Medical Device.

References

    1. LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. - DOI - PubMed
    1. Rajpurkar P., Chen E., Banerjee O., Topol E.J. AI in health and medicine. Nat. Med. 2022;28:31–38. doi: 10.1038/s41591-021-01614-0. - DOI - PubMed
    1. Vardas P.E., Asselbergs F.W., vanSmeden M., Friedman P. The year in cardiovascular medicine 2021: Digital health and innovation. Eur. Heart J. 2022;21:271–279. doi: 10.1093/eurheartj/ehab874. - DOI - PubMed
    1. Sutton R.T., Pincock D., Baumgart D.C., Sadowski D.C., Fedorak R.N., Kroeker K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020;3:17. doi: 10.1038/s41746-020-0221-y. - DOI - PMC - PubMed
    1. Theodoridis S., Koutroumbas K. Pattern Recognition. 4th ed. Academic Press; Cambridge, MA, USA: 2009.

LinkOut - more resources