Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Feb;33(2):142-50.
doi: 10.1139/m87-025.

Cell wall alterations in staphylococci growing in situ in experimental osteomyelitis

Cell wall alterations in staphylococci growing in situ in experimental osteomyelitis

J W Costerton et al. Can J Microbiol. 1987 Feb.

Abstract

When cells of both Staphylococcus aureus and Staphylococcus epidermidis are grown in batch culture in nutrient-rich media, their cell walls are regular in thickness, their cell size is within the normal range for each species, and their septation patterns are orderly. When cells of each of these species are examined directly in infected tissue in the rabbit tibia model infection, their cell wall thickness is often much increased and very irregular around the circumference of the cell, their cell size is often increased, and their septation patterns are often severely deranged. All of these alterations in cell wall structure occur in the absence of antibiotics, and we suggest that they may be an expression of phenotypic plasticity in response to altered environmental conditions such as specific nutrient limitations, the presence of antibacterial factors, and growth of the cells on hard surfaces such as rabbit bone or plastic catheters. Some of these specific cell wall alterations are also seen when staphylococcal cells are exposed, in vitro or in vivo, to antibiotics such as clindamycin, but we emphasize that growth in tissue alone is sufficient for their induction.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources