Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec 1;114(5):1032-1044.
doi: 10.1016/j.ijrobp.2022.05.038. Epub 2022 Jul 8.

Normal Tissue Sparing by FLASH as a Function of Single-Fraction Dose: A Quantitative Analysis

Affiliations

Normal Tissue Sparing by FLASH as a Function of Single-Fraction Dose: A Quantitative Analysis

Till Tobias Böhlen et al. Int J Radiat Oncol Biol Phys. .

Abstract

Purpose: The FLASH effect designates normal tissue sparing by ultra-high dose rate (UHDR) compared with conventional dose rate irradiation without compromising tumor control. Understanding the magnitude of this effect and its dependency on dose are essential requirements for an optimized clinical translation of FLASH radiation therapy. In this context, we evaluated available experimental data on the magnitudes of normal tissue sparing provided by the FLASH effect as a function of dose, and followed a phenomenological data-driven approach for its parameterization.

Methods and materials: We gathered available in vivo data of normal tissue sparing of conventional (CONV) versus UHDR single-fraction doses and converted these to a common scale using isoeffect dose ratios, hereafter referred to as FLASH-modifying factors (FMF= (DCONV/DUHDR)|isoeffect). We then evaluated the suitability of a piecewise linear function with 2 pieces to parametrize FMF × DUHDR as a function of dose DUHDR.

Results: We found that the magnitude of FMF generally decreases (ie, sparing increases) as a function of single-fraction dose, and that individual data series can be described by the piecewise linear function. The sparing magnitude appears organ-specific, and pooled skin-reaction data followed a consistent trend as a function of dose. Average FMF values and their standard deviations were 0.95 ± 0.11 for all data <10 Gy, 0.92 ± 0.06 for mouse gut data between 10 and 25 Gy, and 0.96 ± 0.07 and 0.71 ± 0.06 for mammalian skin-reaction data between 10 and 25 Gy and >25 Gy, respectively.

Conclusions: The magnitude of normal tissue sparing by FLASH increases with dose and is dependent on the irradiated tissue. A piecewise linear function can parameterize currently available individual data series.

PubMed Disclaimer

LinkOut - more resources