Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep:224:107006.
doi: 10.1016/j.cmpb.2022.107006. Epub 2022 Jul 4.

Plate configuration for biological reconstructions of femoral intercalary defect - a finite element evaluation

Affiliations

Plate configuration for biological reconstructions of femoral intercalary defect - a finite element evaluation

Ziyang He et al. Comput Methods Programs Biomed. 2022 Sep.

Abstract

Background and objective: Biological reconstruction was commonly used for femoral intercalary defect. The initial stability by plate fixation was believed to have an effect on bone union and implant failure. Our study was proposed to explore relationship of plate configuration and initial stability for femoral intercalary reconstruction using allo-/autograft.

Methods: Femoral intercalary defect models were established with four different plate configurations: (1) Single lateral bridging plate, SLP (2) Lateral bridging plate + Orthogonal adjuvant plate, LP+OAP (3) Lateral bridging plate + Medial adjuvant plate, LP+MAP (4) Lateral bridging plate + Medial bridging plate, LP+MP. A diaphysis defect of 12 cm was simulated, and the removed native femoral bone was used as a structural allograft with the osteotomy gap of 2 mm. Models were analyzed by finite element simulations under an axial compression of 2000N and an axial moment of 10 Nm, respectively.

Results: Axial load: (1) The peak von Mises stress of SLP, LP+OAP, LP+MAP, LP+MP were 993.50 MPa, 335.63 MPa, 240.03 MPa, 281.73 MPa, respectively and LP+MAP was the lowest (p < 0.01); (2) The mean displacement of SLP, LP+OAP, LP+MAP, LP+MP was 0.765, 0.130, 0.121, 0.235 mm, respectively. LP+MAP showed the best stability while SLP had a crash in the medial proximal gap; (3) The LP+MAP configuration had the most uniform stress distribution and the lowest maximum von Mises stress of 79.7 MPa within plates. Axial torsional load: (1) The peak von Mises stress of SLP, LP+OAP, LP+MAP, LP+MP were 431.66Mpa, 120.73 MPa, 72.31 MPa, 109.86 MPa, respectively; (2) The rotation angle of SLP, LP+OAP, LP+MAP, LP+MP was 4.30°, 1.35°, 1.20°, 1.57°, respectively. All of LP+OAP, LP+MAP and LP+MP showed an optimal torsional stability.

Conclusions: For femoral intercalary reconstruction using allo-/autograft fixed by plates, LP+MAP and LP+MP configurations showed superior stability in terms of axial compression and torsion load by FE simulation. A better stability was believed to be associated with higher union rate and lower hardware failure rate.

Keywords: Biological reconstruction; Finite element analysis; Intercalary defect; Plates; Stability.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest Neither the entire paper nor part of its content has been published or has been accepted elsewhere. It is not being submitted to any other journal. The authors have no potential conflict of interest related to any for-profit company or institution in any ways.

Similar articles

Cited by

LinkOut - more resources