Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information
- PMID: 35817846
- PMCID: PMC9273620
- DOI: 10.1038/s41746-022-00639-0
Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information
Abstract
Many machine learning techniques provide a simple prediction for drug-drug interactions (DDIs). However, a systematically constructed database with pharmacokinetic (PK) DDI information does not exist, nor is there a machine learning model that numerically predicts PK fold change (FC) with it. Therefore, we propose a PK DDI prediction (PK-DDIP) model for quantitative DDI prediction with high accuracy, while constructing a highly reliable PK-DDI database. Reliable information of 3,627 PK DDIs was constructed from 3,587 drugs using 38,711 Food and Drug Administration (FDA) drug labels. This PK-DDIP model predicted the FC of the area under the time-concentration curve (AUC) within ± 0.5959. The prediction proportions within 0.8-1.25-fold, 0.67-1.5-fold, and 0.5-2-fold of the AUC were 75.77, 86.68, and 94.76%, respectively. Two external validations confirmed good prediction performance for newly updated FDA labels and FC from patients'. This model enables potential DDI evaluation before clinical trials, which will save time and cost.
© 2022. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures




Similar articles
-
DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions.BMC Bioinformatics. 2019 Dec 24;20(Suppl 19):661. doi: 10.1186/s12859-019-3214-6. BMC Bioinformatics. 2019. PMID: 31870276 Free PMC article.
-
Statin Drug-Drug Interactions: Pharmacokinetic Basis of FDA Labeling Recommendations and Comparison Across Common Tertiary Clinical Resources.J Clin Pharmacol. 2024 Jun;64(6):704-712. doi: 10.1002/jcph.2406. Epub 2024 Feb 1. J Clin Pharmacol. 2024. PMID: 38299698
-
Assessment of algorithms for predicting drug-drug interactions via inhibition mechanisms: comparison of dynamic and static models.Br J Clin Pharmacol. 2011 Jan;71(1):72-87. doi: 10.1111/j.1365-2125.2010.03799.x. Br J Clin Pharmacol. 2011. PMID: 21143503 Free PMC article.
-
Are circulating metabolites important in pharmacokinetic drug-drug interactions? A retroanalysis of clinical data.Curr Drug Metab. 2014;15(8):767-90. doi: 10.2174/1389200216666150223152113. Curr Drug Metab. 2014. PMID: 25705906 Review.
-
Use of clearance concepts and modeling techniques in the prediction of metabolic drug-drug interactions.Trends Pharmacol Sci. 2010 Aug;31(8):351-5. doi: 10.1016/j.tips.2010.05.002. Epub 2010 Jun 9. Trends Pharmacol Sci. 2010. PMID: 20542578 Review.
Cited by
-
Prediction of drug permeation through microneedled skin by machine learning.Bioeng Transl Med. 2023 Apr 3;8(6):e10512. doi: 10.1002/btm2.10512. eCollection 2023 Nov. Bioeng Transl Med. 2023. PMID: 38023708 Free PMC article.
-
Pharmacokinetics-Pharmacodynamics Modeling for Evaluating Drug-Drug Interactions in Polypharmacy: Development and Challenges.Clin Pharmacokinet. 2024 Jul;63(7):919-944. doi: 10.1007/s40262-024-01391-2. Epub 2024 Jun 18. Clin Pharmacokinet. 2024. PMID: 38888813 Review.
-
Tribulations and future opportunities for artificial intelligence in precision medicine.J Transl Med. 2024 Apr 30;22(1):411. doi: 10.1186/s12967-024-05067-0. J Transl Med. 2024. PMID: 38702711 Free PMC article. Review.
-
Pharmacokinetic and Pharmacodynamic Drug-Drug Interactions: Research Methods and Applications.Metabolites. 2023 Jul 29;13(8):897. doi: 10.3390/metabo13080897. Metabolites. 2023. PMID: 37623842 Free PMC article. Review.
-
The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies.Pharmaceuticals (Basel). 2023 Jun 18;16(6):891. doi: 10.3390/ph16060891. Pharmaceuticals (Basel). 2023. PMID: 37375838 Free PMC article. Review.
References
Grants and funding
LinkOut - more resources
Full Text Sources