Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct;6(10):1386-1397.
doi: 10.1038/s41562-022-01392-w. Epub 2022 Jul 11.

The globalizability of temporal discounting

Kai Ruggeri  1   2 Amma Panin  3 Milica Vdovic  4 Bojana Većkalov  5 Nazeer Abdul-Salaam  6 Jascha Achterberg  7   8 Carla Akil  9 Jolly Amatya  10 Kanchan Amatya  11 Thomas Lind Andersen  12 Sibele D Aquino  13   14 Arjoon Arunasalam  15 Sarah Ashcroft-Jones  16 Adrian Dahl Askelund  17   18 Nélida Ayacaxli  6 Aseman Bagheri Sheshdeh  19 Alexander Bailey  15 Paula Barea Arroyo  20 Genaro Basulto Mejía  21 Martina Benvenuti  22 Mari Louise Berge  23 Aliya Bermaganbet  24 Katherine Bibilouri  6   25 Ludvig Daae Bjørndal  18 Sabrina Black  26 Johanna K Blomster Lyshol  27 Tymofii Brik  28 Eike Kofi Buabang  29 Matthias Burghart  30 Aslı Bursalıoğlu  31 Naos Mesfin Buzayu  32 Martin Čadek  33 Nathalia Melo de Carvalho  13   34 Ana-Maria Cazan  35 Melis Çetinçelik  36 Valentino E Chai  37 Patricia Chen  37 Shiyi Chen  38 Georgia Clay  39 Simone D'Ambrogio  16 Kaja Damnjanović  40 Grace Duffy  15 Tatianna Dugue  6 Twinkle Dwarkanath  6 Esther Awazzi Envuladu  41 Nikola Erceg  42 Celia Esteban-Serna  20 Eman Farahat  43   44 R A Farrokhnia  6 Mareyba Fawad  6 Muhammad Fedryansyah  45 David Feng  6   46 Silvia Filippi  47 Matías A Fonollá  19 René Freichel  5 Lucia Freira  48 Maja Friedemann  16 Ziwei Gao  20 Suwen Ge  6 Sandra J Geiger  49 Leya George  20 Iulia Grabovski  35 Aleksandra Gracheva  6   25 Anastasia Gracheva  6   50 Ali Hajian  51 Nida Hasan  6   25 Marlene Hecht  52   53 Xinyi Hong  54 Barbora Hubená  55 Alexander Gustav Fredriksen Ikonomeas  18 Sandra Ilić  40 David Izydorczyk  56 Lea Jakob  57   58 Margo Janssens  59 Hannes Jarke  7 Ondřej Kácha  7   60 Kalina Nikolova Kalinova  61 Forget Mingiri Kapingura  62 Ralitsa Karakasheva  63 David Oliver Kasdan  64 Emmanuel Kemel  65 Peggah Khorrami  66 Jakub M Krawiec  67 Nato Lagidze  6 Aleksandra Lazarević  40 Aleksandra Lazić  40 Hyung Seo Lee  68 Žan Lep  69 Samuel Lins  70 Ingvild Sandø Lofthus  18 Lucía Macchia  71 Salomé Mamede  70 Metasebiya Ayele Mamo  32 Laura Maratkyzy  72 Silvana Mareva  7 Shivika Marwaha  73 Lucy McGill  74 Sharon McParland  15 Anișoara Melnic  35 Sebastian A Meyer  75   76 Szymon Mizak  67 Amina Mohammed  77 Aizhan Mukhyshbayeva  78 Joaquin Navajas  48   79 Dragana Neshevska  80 Shehrbano Jamali Niazi  81 Ana Elsa Nieto Nieves  82 Franziska Nippold  5 Julia Oberschulte  83 Thiago Otto  6 Riinu Pae  20 Tsvetelina Panchelieva  84 Sun Young Park  6 Daria Stefania Pascu  47 Irena Pavlović  40 Marija B Petrović  40 Dora Popović  85 Gerhard M Prinz  86 Nikolay R Rachev  87 Pika Ranc  69 Josip Razum  85 Christina Eun Rho  6 Leonore Riitsalu  88 Federica Rocca  15 R Shayna Rosenbaum  89   90 James Rujimora  91 Binahayati Rusyidi  45 Charlotte Rutherford  7 Rand Said  15 Inés Sanguino  16 Ahmet Kerem Sarikaya  6 Nicolas Say  92 Jakob Schuck  49 Mary Shiels  15 Yarden Shir  93 Elisabeth D C Sievert  94 Irina Soboleva  32 Tina Solomonia  95 Siddhant Soni  96 Irem Soysal  6   16 Federica Stablum  7   97 Felicia T A Sundström  98 Xintong Tang  6 Felice Tavera  99 Jacqueline Taylor  6 Anna-Lena Tebbe  100 Katrine Krabbe Thommesen  101 Juliette Tobias-Webb  102 Anna Louise Todsen  26 Filippo Toscano  47 Tran Tran  96 Jason Trinh  6 Alice Turati  6   25 Kohei Ueda  103 Martina Vacondio  104 Volodymyr Vakhitov  28 Adrianna J Valencia  6   91 Chiara Van Reyn  29 Tina A G Venema  105 Sanne E Verra  106 Jáchym Vintr  57   60 Marek A Vranka  57 Lisa Wagner  107 Xue Wu  103 Ke Ying Xing  108 Kailin Xu  15 Sonya Xu  6   7 Yuki Yamada  103 Aleksandra Yosifova  109 Zorana Zupan  40 Eduardo García-Garzon  110
Affiliations

The globalizability of temporal discounting

Kai Ruggeri et al. Nat Hum Behav. 2022 Oct.

Abstract

Economic inequality is associated with preferences for smaller, immediate gains over larger, delayed ones. Such temporal discounting may feed into rising global inequality, yet it is unclear whether it is a function of choice preferences or norms, or rather the absence of sufficient resources for immediate needs. It is also not clear whether these reflect true differences in choice patterns between income groups. We tested temporal discounting and five intertemporal choice anomalies using local currencies and value standards in 61 countries (N = 13,629). Across a diverse sample, we found consistent, robust rates of choice anomalies. Lower-income groups were not significantly different, but economic inequality and broader financial circumstances were clearly correlated with population choice patterns.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Spending timelines after receiving the COVID-19 relief stimulus payment.
Spending before and after receiving a 2020 CARES Act stimulus payment for lower-income (earning under US$28,001 per year), middle-income (US$28,001–US$68,000) and higher-income (above US$68,000) individuals. The baseline average (light blue line) is the amount spent 60 days prior to receiving the payment. The left plot presents proportional spending compared with a standard baseline. The right plot presents the same information but uses actual spending values. Apart from the days immediately following receipt, the base-standardized spending patterns are almost identical for all three groups. Source data
Fig. 2
Fig. 2. Global indications of intertemporal choice.
af, Maps of choice preferences in aggregate and by individual anomaly indicate heterogeneity in intertemporal choice patterns. While some subtle patterns emerge, particularly stronger preferences for delayed gains in higher-income regions, choice preferences are broadly consistent across 61 countries in the sense that all anomalies appear in all locations. No location consistently presents extremes (high or low) of each anomaly. The results are based on the models specified in Supplementary Table 13. g,h, Conditional smooth effects (black) and 95% confidence intervals (light blue). Map from Natural Earth (naturalearthdata.com). Source data
Fig. 3
Fig. 3. Baseline temporal discounting and GDP.
ac, There is a clear trend of lower GDP being associated with higher preferences for immediate gains and later payments. However, all locations indicate some preference for immediate over delayed. Taken together, this provides support for the hypothesis that baseline temporal discounting is observed globally and that the economic environment may shape its contours. The results are based on the models specified in Supplementary Table 14. Smooth terms and 95% confidence intervals are presented in black and grey, respectively. Source data
Fig. 4
Fig. 4. Anomalies and temporal discounting scores by country.
a,b, Proportions (solid bars are overall means) of participants that demonstrated inconsistent choice preferences (a) and the proportion of each country sample that aligned with the five anomalies of interest (b). Apart from absolute magnitude and present bias, no consistent rate was based on wealth, and all countries indicate some presence of each anomaly. ch, Each plot presents the distribution of values ordered by mean or proportion value. Plot c presents the distribution of discounting scores for each country, including means, prediction intervals (coloured) and standard deviations (grey). Plots dh show the proportions of participants that presented each anomaly. While the difference from lowest to highest for each is noteworthy, similar variabilities exist across all. See Supplementary Figs. 3–8 for the full values and sample sizes for each point. Source data
Fig. 5
Fig. 5. Wealth, debt, inequality and temporal discounting.
af, Plots using standardized scores for temporal discounting indicate an overall trend that greater wealth and income at the individual and national levels are associated with lower overall temporal discounting, and greater economic inequality and individual debt are associated with lower overall temporal discounting. Inflation has a modest relationship with discounting, which becomes much stronger at substantially high levels of inflation. The results for each variable by score are from models specified in Supplementary Table 16. Smooth terms and 95% confidence intervals are presented in black and grey, respectively. Source data

References

    1. Angrisani, M., Burke, J., Lusardi, A. & Mottola, G. The Stability and Predictive Power of Financial Literacy: Evidence from Longitudinal Data Working Paper No. 28125 (NBER, 2020); 10.3386/w28125
    1. Haushofer J, Fehr E. On the psychology of poverty. Science. 2014;344:862–867. doi: 10.1126/science.1232491. - DOI - PubMed
    1. Chapman GB. Temporal discounting and utility for health and money. J. Exp. Psychol. Learn. Mem. Cogn. 1996;22:771–791. doi: 10.1037/0278-7393.22.3.771. - DOI - PubMed
    1. Green L, Myerson J, Mcfadden E. Rate of temporal discounting decreases with amount of reward. Mem. Cogn. 1997;25:715–723. doi: 10.3758/BF03211314. - DOI - PubMed
    1. Critchfield TS, Kollins SH. Temporal discounting: basic research and the analysis of socially important behavior. J. Appl. Behav. Anal. 2001;34:101–122. doi: 10.1901/jaba.2001.34-101. - DOI - PMC - PubMed

Publication types