Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 11;15(1):254.
doi: 10.1186/s13071-022-05310-x.

First national-scale evaluation of temephos resistance in Aedes aegypti in Peru

Affiliations

First national-scale evaluation of temephos resistance in Aedes aegypti in Peru

Miriam Palomino et al. Parasit Vectors. .

Abstract

Background: The development of resistance against insecticides in Aedes aegypti can lead to operational failures in control programs. Knowledge of the spatial and temporal trends of this resistance is needed to drive effective monitoring campaigns, which in turn provide data on which vector control decision-making should be based.

Methods: Third-stage larvae (L3) from the F1 and F2 generations of 39 Peruvian field populations of Ae. aegypti mosquitoes from established laboratory colonies were evaluated for resistance against the organophosphate insecticide temephos. The 39 populations were originally established from eggs collected in the field with ovitraps in eight departments of Peru during 2018 and 2019. Dose-response bioassays, at 11 concentrations of the insecticide, were performed following WHO recommendations.

Results: Of the 39 field populations of Ae. aegypti tested for resistance to temephos , 11 showed high levels of resistance (resistance ratio [RR] > 10), 16 showed moderate levels of resistance (defined as RR values between 5 and 10) and only 12 were susceptible (RR < 5). The results segregated the study populations into two geographic groups. Most of the populations in the first geographic group, the coastal region, were resistant to temephos, with three populations (AG, CR and LO) showing RR values > 20 (AG 21.5, CR 23.1, LO 39.4). The populations in the second geographic group, the Amazon jungle and the high jungle, showed moderate levels of resistance, with values ranging between 5.1 (JN) and 7.1 (PU). The exception in this geographic group was the population from PM, which showed a RR value of 28.8 to this insecticide.

Conclusions: The results of this study demonstrate that Ae. aegypti populations in Peru present different resistance intensities to temephos, 3 years after temephos use was discontinued. Resistance to this larvicide should continue to be monitored because it is possible that resistance to temephos could decrease in the absence of routine selection pressures.

Keywords: Aedes aegypti; Arboviruses; Insecticide resistance; Resistance ratio (RR); Temephos; Vector control.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Map of the selected localities in the three ecological regions of Peru where the 39 populations of Aedes aegypti originated. 1 Zarumilla (ZA), 2 Aguas Verdes (AG), 3 Corrales (CR), 4 Pampa Grande (PG), 5 Sagaro (SA), 6 Cabuyal (CB), 7 La Cruz (CZ), 8 San José (JO), 9 Micaela Bastidas (MI), 10 Tambogrande (TA), 11 Chulucanas (CH), 12 Bellavista (BE), 13 Comunidad Saludable (CS), 14 Los Órganos (LO), 15 Máncora (MA), 16 El Porvenir (PO), 17 La Esperanza (ES), 18 Laredo (LA), 19 Florencia de Mora (FL), 20 Chao (CA), 21 Virú (VI), 22 Morales (MR), 23 Banda de Shilcayo (BS), 24 Juanjui (JJ), 25 Moyobamba (MO), 26 Nuevo Bambamarca (BM), 27 Tocache (TO), 28 Satipo (ST), 29 San Juan Bautista (JN), 30 Iquitos (IQ), 31 Belén (BN), 32 Punchana (PU), 33 Manantay (MY), 34 San Fernando (FE), 35 Callería (PL), 36 José Carlos Mariátegui (PA), 37 Yarinacocha (YA), 38 San José Yarinacocha (SY), 39 Puerto Maldonado (PM)
Fig. 2
Fig. 2
Temephos resistance ratios in Peruvian populations of Ae. aegypti 2018–2019. Abbreviations: RR Resistance ratio (see Eq. 1)
Fig. 3
Fig. 3
Linear regression of Ae. aegypti mortality after exposure to the organophosphate temephos in Peruvian populations compared to the susceptible Rockefeller strain (in blue). a The Amazon jungle, b Coast, c High jungle

Similar articles

Cited by

References

    1. Hamid PH, Ninditya VI, Ghiffari A, Taubert A, Hermosilla C. The V1016G mutation of the voltage-gated sodium channel (VGSC) gene contributes to the insecticide resistance of Aedes aegypti from Makassar, Indonesia. Parasitol Res. 2020;119(7):2075–2083. doi: 10.1007/s00436-020-06720-5. - DOI - PubMed
    1. Fontana JD, Ferreira RL, Zuccolotto T, de BorbaDallagassa C, Wielewski LP, Chalcoski BMS, et al. Accelerating the morphogenetic cycle of the viral vector Aedes aegypti larvae for faster larvicidal bioassays. Biomed Res Int. 2020;2020:1–9. doi: 10.1155/2020/7405421. - DOI - PMC - PubMed
    1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–507. doi: 10.1038/nature12060. - DOI - PMC - PubMed
    1. Castillo-Quino R, Vallejo-Castro E, Camacho-Aliaga AV, Canelas-Urey HI. Adaptación del mosquito Aedes aegypti a 2 550 m s.n.m. Cochabamba, Bolivia, Febrero 2016. Gac Medica Boliv. 2018;41(1):24–30. doi: 10.47993/gmb.v41i1.148. - DOI
    1. Ruiz-López F, González-Mazo A, Vélez-Mira A, Gómez GF, Zuleta L, Uribe S, et al. Presencia de Aedes (Stegomyia) aegypti (Linnaeus, 1762) y su infección natural con el virus del dengue en alturas no registradas para Colombia. Biomedica. 2016;36(2):303–308. doi: 10.7705/biomedica.v36i2.3301. - DOI - PubMed

LinkOut - more resources